These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 21131433)
1. Interaction between the Candida albicans high-osmolarity glycerol (HOG) pathway and the response to human beta-defensins 2 and 3. Argimón S; Fanning S; Blankenship JR; Mitchell AP Eukaryot Cell; 2011 Feb; 10(2):272-5. PubMed ID: 21131433 [TBL] [Abstract][Full Text] [Related]
2. Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans. Hayes BM; Bleackley MR; Wiltshire JL; Anderson MA; Traven A; van der Weerden NL Antimicrob Agents Chemother; 2013 Aug; 57(8):3667-75. PubMed ID: 23689717 [TBL] [Abstract][Full Text] [Related]
3. Distinct antifungal mechanisms: beta-defensins require Candida albicans Ssa1 protein, while Trk1p mediates activity of cysteine-free cationic peptides. Vylkova S; Li XS; Berner JC; Edgerton M Antimicrob Agents Chemother; 2006 Jan; 50(1):324-31. PubMed ID: 16377704 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory effect of berberine hydrochloride against Candida albicans and the role of the HOG-MAPK pathway. Huang X; Yi Y; Yong J; Sun J; Song Z; Li D; Li Y J Antibiot (Tokyo); 2021 Nov; 74(11):807-816. PubMed ID: 34408288 [TBL] [Abstract][Full Text] [Related]
5. Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway. Vylkova S; Jang WS; Li W; Nayyar N; Edgerton M Eukaryot Cell; 2007 Oct; 6(10):1876-88. PubMed ID: 17715369 [TBL] [Abstract][Full Text] [Related]
6. Candida albicans mucin Msb2 is a broad-range protectant against antimicrobial peptides. Swidergall M; Ernst AM; Ernst JF Antimicrob Agents Chemother; 2013 Aug; 57(8):3917-22. PubMed ID: 23733470 [TBL] [Abstract][Full Text] [Related]
7. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. Aerts AM; Carmona-Gutierrez D; Lefevre S; Govaert G; François IE; Madeo F; Santos R; Cammue BP; Thevissen K FEBS Lett; 2009 Aug; 583(15):2513-6. PubMed ID: 19596007 [TBL] [Abstract][Full Text] [Related]
8. The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms. Vriens K; Cools TL; Harvey PJ; Craik DJ; Braem A; Vleugels J; De Coninck B; Cammue BP; Thevissen K Peptides; 2016 Jan; 75():71-9. PubMed ID: 26592804 [TBL] [Abstract][Full Text] [Related]
9. Antifungal activities of human beta-defensins HBD-1 to HBD-3 and their C-terminal analogs Phd1 to Phd3. Krishnakumari V; Rangaraj N; Nagaraj R Antimicrob Agents Chemother; 2009 Jan; 53(1):256-60. PubMed ID: 18809937 [TBL] [Abstract][Full Text] [Related]
10. Defensins from insects and plants interact with fungal glucosylceramides. Thevissen K; Warnecke DC; François IE; Leipelt M; Heinz E; Ott C; Zähringer U; Thomma BP; Ferket KK; Cammue BP J Biol Chem; 2004 Feb; 279(6):3900-5. PubMed ID: 14604982 [TBL] [Abstract][Full Text] [Related]
11. Rat recombinant β-defensin 22 is a heparin-binding protein with antimicrobial activity. Diao H; Yu HG; Sun F; Zhang YL; Tanphaichitr N Asian J Androl; 2011 Mar; 13(2):305-11. PubMed ID: 21151152 [TBL] [Abstract][Full Text] [Related]
12. Insight into the role of HOG pathway components Ssk2p, Pbs2p, and Hog1p in the opportunistic yeast Candida lusitaniae. Boisnard S; Ruprich-Robert G; Florent M; Da Silva B; Chapeland-Leclerc F; Papon N Eukaryot Cell; 2008 Dec; 7(12):2179-83. PubMed ID: 18952902 [TBL] [Abstract][Full Text] [Related]
13. Non-canonical Activities of Hog1 Control Sensitivity of Morales-Menchén A; Navarro-García F; Guirao-Abad JP; Román E; Prieto D; Coman IV; Pla J; Alonso-Monge R Front Cell Infect Microbiol; 2018; 8():135. PubMed ID: 29774204 [TBL] [Abstract][Full Text] [Related]
14. Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures. Vriens K; Cools TL; Harvey PJ; Craik DJ; Spincemaille P; Cassiman D; Braem A; Vleugels J; Nibbering PH; Drijfhout JW; De Coninck B; Cammue BP; Thevissen K PLoS One; 2015; 10(8):e0132701. PubMed ID: 26248029 [TBL] [Abstract][Full Text] [Related]
15. LL37 and hBD-3 elevate the β-1,3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic. Chang HT; Tsai PW; Huang HH; Liu YS; Chien TS; Lan CY Biochem J; 2012 Feb; 441(3):963-70. PubMed ID: 22023339 [TBL] [Abstract][Full Text] [Related]
16. Bcr1 functions downstream of Ssd1 to mediate antimicrobial peptide resistance in Candida albicans. Jung SI; Finkel JS; Solis NV; Chaili S; Mitchell AP; Yeaman MR; Filler SG Eukaryot Cell; 2013 Mar; 12(3):411-9. PubMed ID: 23314964 [TBL] [Abstract][Full Text] [Related]
17. Exposure to caspofungin activates Cap and Hog pathways in Candida albicans. Kelly J; Rowan R; McCann M; Kavanagh K Med Mycol; 2009 Nov; 47(7):697-706. PubMed ID: 19888802 [TBL] [Abstract][Full Text] [Related]
18. Engineering improved variants of the antifungal peptide histatin 5 with reduced susceptibility to Candida albicans secreted aspartic proteases and enhanced antimicrobial potency. Ikonomova SP; Moghaddam-Taaheri P; Jabra-Rizk MA; Wang Y; Karlsson AJ FEBS J; 2018 Jan; 285(1):146-159. PubMed ID: 29143452 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial activity of human β-defensin 4 analogs: insights into the role of disulfide linkages in modulating activity. Sharma H; Nagaraj R Peptides; 2012 Dec; 38(2):255-65. PubMed ID: 23000475 [TBL] [Abstract][Full Text] [Related]
20. A Thioether-Stabilized d-Proline-l-Proline-Induced β-Hairpin Peptide of Defensin Segment Increases Its Anti-Candida albicans Ability. Zhao B; Yang D; Wong JH; Wang J; Yin C; Zhu Y; Fan S; Ng TB; Xia J; Li Z Chembiochem; 2016 Aug; 17(15):1416-20. PubMed ID: 27194395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]