These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21131438)

  • 1. Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata.
    Paul S; Schmidt JA; Moye-Rowley WS
    Eukaryot Cell; 2011 Feb; 10(2):187-97. PubMed ID: 21131438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata.
    Ferrari S; Sanguinetti M; Torelli R; Posteraro B; Sanglard D
    PLoS One; 2011 Mar; 6(3):e17589. PubMed ID: 21408004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants.
    Tsai HF; Krol AA; Sarti KE; Bennett JE
    Antimicrob Agents Chemother; 2006 Apr; 50(4):1384-92. PubMed ID: 16569856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence.
    Ferrari S; Ischer F; Calabrese D; Posteraro B; Sanguinetti M; Fadda G; Rohde B; Bauser C; Bader O; Sanglard D
    PLoS Pathog; 2009 Jan; 5(1):e1000268. PubMed ID: 19148266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Functionally Redundant FK506-Binding Proteins Regulate Multidrug Resistance Gene Expression and Govern Azole Antifungal Resistance.
    Moirangthem R; Kumar K; Kaur R
    Antimicrob Agents Chemother; 2021 May; 65(6):. PubMed ID: 33722894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive autoregulation and repression of transactivation are key regulatory features of the Candida glabrata Pdr1 transcription factor.
    Khakhina S; Simonicova L; Moye-Rowley WS
    Mol Microbiol; 2018 Mar; 107(6):747-764. PubMed ID: 29363861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genomic binding sites for Candida glabrata Pdr1 transcription factor in wild-type and ρ0 cells.
    Paul S; Bair TB; Moye-Rowley WS
    Antimicrob Agents Chemother; 2014 Nov; 58(11):6904-12. PubMed ID: 25199772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.
    Nishikawa JL; Boeszoermenyi A; Vale-Silva LA; Torelli R; Posteraro B; Sohn YJ; Ji F; Gelev V; Sanglard D; Sanguinetti M; Sadreyev RI; Mukherjee G; Bhyravabhotla J; Buhrlage SJ; Gray NS; Wagner G; Näär AM; Arthanari H
    Nature; 2016 Feb; 530(7591):485-9. PubMed ID: 26886795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates.
    Tsai HF; Sammons LR; Zhang X; Suffis SD; Su Q; Myers TG; Marr KA; Bennett JE
    Antimicrob Agents Chemother; 2010 Aug; 54(8):3308-17. PubMed ID: 20547810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STB5 is a negative regulator of azole resistance in Candida glabrata.
    Noble JA; Tsai HF; Suffis SD; Su Q; Myers TG; Bennett JE
    Antimicrob Agents Chemother; 2013 Feb; 57(2):959-67. PubMed ID: 23229483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata.
    Torelli R; Posteraro B; Ferrari S; La Sorda M; Fadda G; Sanglard D; Sanguinetti M
    Mol Microbiol; 2008 Apr; 68(1):186-201. PubMed ID: 18312269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression Patterns of ABC Transporter Genes in Fluconazole-Resistant Candida glabrata.
    Gohar AA; Badali H; Shokohi T; Nabili M; Amirrajab N; Moazeni M
    Mycopathologia; 2017 Apr; 182(3-4):273-284. PubMed ID: 27744635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative regulation of Candida glabrata Pdr1 by the deubiquitinase subunit Bre5 occurs in a ubiquitin independent manner.
    Paul S; McDonald WH; Moye-Rowley WS
    Mol Microbiol; 2018 Oct; 110(2):309-323. PubMed ID: 30137659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP; Earhart KD; Smith WL; Homayouni R; Edlind TD; Rogers PD
    Mol Microbiol; 2006 Aug; 61(3):704-22. PubMed ID: 16803598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Missense mutation in CgPDR1 regulator associated with azole-resistant Candida glabrata recovered from Thai oral candidiasis patients.
    Tantivitayakul P; Lapirattanakul J; Kaypetch R; Muadcheingka T
    J Glob Antimicrob Resist; 2019 Jun; 17():221-226. PubMed ID: 30658200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon.
    Caudle KE; Barker KS; Wiederhold NP; Xu L; Homayouni R; Rogers PD
    Eukaryot Cell; 2011 Mar; 10(3):373-83. PubMed ID: 21193550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gain-of-function mutations in PDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells.
    Vale-Silva L; Ischer F; Leibundgut-Landmann S; Sanglard D
    Infect Immun; 2013 May; 81(5):1709-20. PubMed ID: 23460523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Candida glabrata Upc2A transcription factor is a global regulator of antifungal drug resistance pathways.
    Vu BG; Stamnes MA; Li Y; Rogers PD; Moye-Rowley WS
    PLoS Genet; 2021 Sep; 17(9):e1009582. PubMed ID: 34591857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonidentical function of Upc2A binding sites in the Candida glabrata CDR1 promoter.
    Vu BG; Moye-Rowley WS
    Genetics; 2022 Sep; 222(2):. PubMed ID: 36063046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disclosing azole resistance mechanisms in resistant Candida glabrata strains encoding wild-type or gain-of-function CgPDR1 alleles through comparative genomics and transcriptomics.
    Salazar SB; Pinheiro MJF; Sotti-Novais D; Soares AR; Lopes MM; Ferreira T; Rodrigues V; Fernandes F; Mira NP
    G3 (Bethesda); 2022 Jul; 12(7):. PubMed ID: 35532173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.