These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 21131439)
1. Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. Hsu PC; Yang CY; Lan CY Eukaryot Cell; 2011 Feb; 10(2):207-25. PubMed ID: 21131439 [TBL] [Abstract][Full Text] [Related]
2. Diverse Hap43-independent functions of the Candida albicans CCAAT-binding complex. Hsu PC; Chao CC; Yang CY; Ye YL; Liu FC; Chuang YJ; Lan CY Eukaryot Cell; 2013 Jun; 12(6):804-15. PubMed ID: 23543673 [TBL] [Abstract][Full Text] [Related]
3. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Chen C; Pande K; French SD; Tuch BB; Noble SM Cell Host Microbe; 2011 Aug; 10(2):118-35. PubMed ID: 21843869 [TBL] [Abstract][Full Text] [Related]
4. Expression of Candida albicans Sfu1 in fission yeast complements the loss of the iron-regulatory transcription factor Fep1 and requires Tup co-repressors. Pelletier B; Mercier A; Durand M; Peter C; Jbel M; Beaudoin J; Labbé S Yeast; 2007 Oct; 24(10):883-900. PubMed ID: 17724773 [TBL] [Abstract][Full Text] [Related]
5. Multiple Evolutionarily Conserved Domains of Cap2 Are Required for Promoter Recruitment and Iron Homeostasis Gene Regulation. Srivastav MK; Agarwal N; Natarajan K mSphere; 2018 Aug; 3(4):. PubMed ID: 30068562 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of TUP1-regulated genes in Candida albicans. Braun BR; Head WS; Wang MX; Johnson AD Genetics; 2000 Sep; 156(1):31-44. PubMed ID: 10978273 [TBL] [Abstract][Full Text] [Related]
7. Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. Singh RP; Prasad HK; Sinha I; Agarwal N; Natarajan K J Biol Chem; 2011 Jul; 286(28):25154-70. PubMed ID: 21592964 [TBL] [Abstract][Full Text] [Related]
8. Interplay between transcriptional regulators and the SAGA chromatin modifying complex fine-tune iron homeostasis. Srivastav MK; Agarwal N; Poonia P; Natarajan K J Biol Chem; 2021 Jul; 297(1):100727. PubMed ID: 33933457 [TBL] [Abstract][Full Text] [Related]
9. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. Murad AM; Leng P; Straffon M; Wishart J; Macaskill S; MacCallum D; Schnell N; Talibi D; Marechal D; Tekaia F; d'Enfert C; Gaillardin C; Odds FC; Brown AJ EMBO J; 2001 Sep; 20(17):4742-52. PubMed ID: 11532938 [TBL] [Abstract][Full Text] [Related]
10. Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes. Alkafeef SS; Lane S; Yu C; Zhou T; Solis NV; Filler SG; Huang L; Liu H PLoS Genet; 2020 Jun; 16(6):e1008881. PubMed ID: 32525871 [TBL] [Abstract][Full Text] [Related]
11. Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans. Ruben S; Garbe E; Mogavero S; Albrecht-Eckardt D; Hellwig D; Häder A; Krüger T; Gerth K; Jacobsen ID; Elshafee O; Brunke S; Hünniger K; Kniemeyer O; Brakhage AA; Morschhäuser J; Hube B; Vylkova S; Kurzai O; Martin R mBio; 2020 Apr; 11(2):. PubMed ID: 32345638 [TBL] [Abstract][Full Text] [Related]
12. Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. García-Sánchez S; Mavor AL; Russell CL; Argimon S; Dennison P; Enjalbert B; Brown AJ Mol Biol Cell; 2005 Jun; 16(6):2913-25. PubMed ID: 15814841 [TBL] [Abstract][Full Text] [Related]
13. Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Hwang CS; Oh JH; Huh WK; Yim HS; Kang SO Mol Microbiol; 2003 Feb; 47(4):1029-43. PubMed ID: 12581357 [TBL] [Abstract][Full Text] [Related]
14. The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans. Ramírez-Zavala B; Krüger I; Dunker C; Jacobsen ID; Morschhäuser J PLoS Pathog; 2022 Feb; 18(2):e1010283. PubMed ID: 35108336 [TBL] [Abstract][Full Text] [Related]
15. Skrahina V; Brock M; Hube B; Brunke S Front Microbiol; 2017; 8():2388. PubMed ID: 29250054 [TBL] [Abstract][Full Text] [Related]
16. Regulatory networks affected by iron availability in Candida albicans. Lan CY; Rodarte G; Murillo LA; Jones T; Davis RW; Dungan J; Newport G; Agabian N Mol Microbiol; 2004 Sep; 53(5):1451-69. PubMed ID: 15387822 [TBL] [Abstract][Full Text] [Related]
17. Aft2, a novel transcription regulator, is required for iron metabolism, oxidative stress, surface adhesion and hyphal development in Candida albicans. Xu N; Cheng X; Yu Q; Qian K; Ding X; Liu R; Zhang B; Xing L; Li M PLoS One; 2013; 8(4):e62367. PubMed ID: 23626810 [TBL] [Abstract][Full Text] [Related]
18. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Knight SAB; Lesuisse E; Stearman R; Klausner RD; Dancis A Microbiology (Reading); 2002 Jan; 148(Pt 1):29-40. PubMed ID: 11782496 [TBL] [Abstract][Full Text] [Related]
19. Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model. Song W; Wang H; Chen J FEMS Yeast Res; 2011 Mar; 11(2):209-22. PubMed ID: 21205158 [TBL] [Abstract][Full Text] [Related]
20. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Banerjee M; Thompson DS; Lazzell A; Carlisle PL; Pierce C; Monteagudo C; López-Ribot JL; Kadosh D Mol Biol Cell; 2008 Apr; 19(4):1354-65. PubMed ID: 18216277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]