These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 21131496)
1. Staphylococcus aureus ClpC divergently regulates capsule via sae and codY in strain newman but activates capsule via codY in strain UAMS-1 and in strain Newman with repaired saeS. Luong TT; Sau K; Roux C; Sau S; Dunman PM; Lee CY J Bacteriol; 2011 Feb; 193(3):686-94. PubMed ID: 21131496 [TBL] [Abstract][Full Text] [Related]
2. Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus. Mlynek KD; Sause WE; Moormeier DE; Sadykov MR; Hill KR; Torres VJ; Bayles KW; Brinsmade SR J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378891 [No Abstract] [Full Text] [Related]
3. MsaB and CodY Interact To Regulate Staphylococcus aureus Capsule in a Nutrient-Dependent Manner. Batte JL; Sahukhal GS; Elasri MO J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29941424 [No Abstract] [Full Text] [Related]
4. Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone. Graham JW; Lei MG; Lee CY J Bacteriol; 2013 Oct; 195(19):4506-16. PubMed ID: 23913326 [TBL] [Abstract][Full Text] [Related]
5. MgrA activates expression of capsule genes, but not the α-toxin gene in experimental Staphylococcus aureus endocarditis. Gupta RK; Alba J; Xiong YQ; Bayer AS; Lee CY J Infect Dis; 2013 Dec; 208(11):1841-8. PubMed ID: 23901087 [TBL] [Abstract][Full Text] [Related]
6. Repression of Capsule Production by XdrA and CodY in Staphylococcus aureus. Lei MG; Lee CY J Bacteriol; 2018 Sep; 200(18):. PubMed ID: 29967117 [TBL] [Abstract][Full Text] [Related]
7. CodY in Staphylococcus aureus: a regulatory link between metabolism and virulence gene expression. Pohl K; Francois P; Stenz L; Schlink F; Geiger T; Herbert S; Goerke C; Schrenzel J; Wolz C J Bacteriol; 2009 May; 191(9):2953-63. PubMed ID: 19251851 [TBL] [Abstract][Full Text] [Related]
8. The mcsB gene of the clpC operon is required for stress tolerance and virulence in Staphylococcus aureus. Wozniak DJ; Tiwari KB; Soufan R; Jayaswal RK Microbiology (Reading); 2012 Oct; 158(Pt 10):2568-2576. PubMed ID: 22902728 [TBL] [Abstract][Full Text] [Related]
9. RbsR Activates Capsule but Represses the rbsUDK Operon in Staphylococcus aureus. Lei MG; Lee CY J Bacteriol; 2015 Dec; 197(23):3666-75. PubMed ID: 26350136 [TBL] [Abstract][Full Text] [Related]
10. CodY-mediated regulation of the Staphylococcus aureus Agr system integrates nutritional and population density signals. Roux A; Todd DA; Velázquez JV; Cech NB; Sonenshein AL J Bacteriol; 2014 Mar; 196(6):1184-96. PubMed ID: 24391052 [TBL] [Abstract][Full Text] [Related]
11. Regulation of the Sae Two-Component System by Branched-Chain Fatty Acids in Staphylococcus aureus. Pendleton A; Yeo WS; Alqahtani S; DiMaggio DA; Stone CJ; Li Z; Singh VK; Montgomery CP; Bae T; Brinsmade SR mBio; 2022 Oct; 13(5):e0147222. PubMed ID: 36135382 [TBL] [Abstract][Full Text] [Related]
12. Differential target gene activation by the Staphylococcus aureus two-component system saeRS. Mainiero M; Goerke C; Geiger T; Gonser C; Herbert S; Wolz C J Bacteriol; 2010 Feb; 192(3):613-23. PubMed ID: 19933357 [TBL] [Abstract][Full Text] [Related]
13. A point mutation in the sensor histidine kinase SaeS of Staphylococcus aureus strain Newman alters the response to biocide exposure. Schäfer D; Lâm TT; Geiger T; Mainiero M; Engelmann S; Hussain M; Bosserhoff A; Frosch M; Bischoff M; Wolz C; Reidl J; Sinha B J Bacteriol; 2009 Dec; 191(23):7306-14. PubMed ID: 19783632 [TBL] [Abstract][Full Text] [Related]
14. The SaeRS Two-Component System Is a Direct and Dominant Transcriptional Activator of Toxic Shock Syndrome Toxin 1 in Staphylococcus aureus. Baroja ML; Herfst CA; Kasper KJ; Xu SX; Gillett DA; Li J; Reid G; McCormick JK J Bacteriol; 2016 Oct; 198(19):2732-42. PubMed ID: 27457715 [TBL] [Abstract][Full Text] [Related]
16. Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates. Herbert S; Ziebandt AK; Ohlsen K; Schäfer T; Hecker M; Albrecht D; Novick R; Götz F Infect Immun; 2010 Jun; 78(6):2877-89. PubMed ID: 20212089 [TBL] [Abstract][Full Text] [Related]
17. SaeRS-dependent inhibition of biofilm formation in Staphylococcus aureus Newman. Cue D; Junecko JM; Lei MG; Blevins JS; Smeltzer MS; Lee CY PLoS One; 2015; 10(4):e0123027. PubMed ID: 25853849 [TBL] [Abstract][Full Text] [Related]
18. saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus. Mrak LN; Zielinska AK; Beenken KE; Mrak IN; Atwood DN; Griffin LM; Lee CY; Smeltzer MS PLoS One; 2012; 7(6):e38453. PubMed ID: 22685571 [TBL] [Abstract][Full Text] [Related]
19. Guanine Limitation Results in CodY-Dependent and -Independent Alteration of Staphylococcus aureus Physiology and Gene Expression. King AN; Borkar SA; Samuels DJ; Batz Z; Bulock LL; Sadykov MR; Bayles KW; Brinsmade SR J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29712876 [TBL] [Abstract][Full Text] [Related]
20. Stochastic Expression of Sae-Dependent Virulence Genes during Staphylococcus aureus Biofilm Development Is Dependent on SaeS. DelMain EA; Moormeier DE; Endres JL; Hodges RE; Sadykov MR; Horswill AR; Bayles KW mBio; 2020 Jan; 11(1):. PubMed ID: 31937649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]