These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 21131513)
1. Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. Michaelidou U; ter Heijne A; Euverink GJ; Hamelers HV; Stams AJ; Geelhoed JS Appl Environ Microbiol; 2011 Feb; 77(3):1069-75. PubMed ID: 21131513 [TBL] [Abstract][Full Text] [Related]
2. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Jung S; Regan JM Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426 [TBL] [Abstract][Full Text] [Related]
3. Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates. Eyiuche NJ; Asakawa S; Yamashita T; Ikeguchi A; Kitamura Y; Yokoyama H BMC Microbiol; 2017 Jun; 17(1):145. PubMed ID: 28662640 [TBL] [Abstract][Full Text] [Related]
4. Convergent development of anodic bacterial communities in microbial fuel cells. Yates MD; Kiely PD; Call DF; Rismani-Yazdi H; Bibby K; Peccia J; Regan JM; Logan BE ISME J; 2012 Nov; 6(11):2002-13. PubMed ID: 22572637 [TBL] [Abstract][Full Text] [Related]
5. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen. Kimura Z; Okabe S ISME J; 2013 Aug; 7(8):1472-82. PubMed ID: 23486252 [TBL] [Abstract][Full Text] [Related]
6. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Chae KJ; Choi MJ; Lee JW; Kim KY; Kim IS Bioresour Technol; 2009 Jul; 100(14):3518-25. PubMed ID: 19345574 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Anodic Community in Microbial Fuel Cells with Iron Oxide-Reducing Community. Yokoyama H; Ishida M; Yamashita T J Microbiol Biotechnol; 2016 Apr; 26(4):757-62. PubMed ID: 26767577 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of different bacterial communities are capable of generating sustainable electricity from microbial fuel cells with organic waste. Yamamoto S; Suzuki K; Araki Y; Mochihara H; Hosokawa T; Kubota H; Chiba Y; Rubaba O; Tashiro Y; Futamata H Microbes Environ; 2014; 29(2):145-53. PubMed ID: 24789988 [TBL] [Abstract][Full Text] [Related]
10. Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. Chung K; Okabe S Biotechnol Bioeng; 2009 Dec; 104(5):901-10. PubMed ID: 19575435 [TBL] [Abstract][Full Text] [Related]
11. Microbial community differences between propionate-fed microbial fuel cell systems under open and closed circuit conditions. de Cárcer DA; Ha PT; Jang JK; Chang IS Appl Microbiol Biotechnol; 2011 Feb; 89(3):605-12. PubMed ID: 20922377 [TBL] [Abstract][Full Text] [Related]
12. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Kiely PD; Call DF; Yates MD; Regan JM; Logan BE Appl Microbiol Biotechnol; 2010 Sep; 88(1):371-80. PubMed ID: 20632002 [TBL] [Abstract][Full Text] [Related]
13. Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge. Ryu EY; Kim M; Lee SJ J Microbiol Biotechnol; 2011 Feb; 21(2):187-91. PubMed ID: 21364302 [TBL] [Abstract][Full Text] [Related]
14. Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials. Sun Y; Wei J; Liang P; Huang X Bioresour Technol; 2011 Dec; 102(23):10886-91. PubMed ID: 21983409 [TBL] [Abstract][Full Text] [Related]
15. Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Beecroft NJ; Zhao F; Varcoe JR; Slade RC; Thumser AE; Avignone-Rossa C Appl Microbiol Biotechnol; 2012 Jan; 93(1):423-37. PubMed ID: 21984392 [TBL] [Abstract][Full Text] [Related]
16. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells. Gao C; Wang A; Wu WM; Yin Y; Zhao YG Bioresour Technol; 2014 Sep; 167():124-32. PubMed ID: 24973773 [TBL] [Abstract][Full Text] [Related]
17. Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing. Lee TK; Van Doan T; Yoo K; Choi S; Kim C; Park J Appl Microbiol Biotechnol; 2010 Aug; 87(6):2335-43. PubMed ID: 20532761 [TBL] [Abstract][Full Text] [Related]
18. Effect of Contact Area and Shape of Anode Current Collectors on Bacterial Community Structure in Microbial Fuel Cells. Paitier A; Haddour N; Gondran C; Vogel TM Molecules; 2022 Mar; 27(7):. PubMed ID: 35408642 [TBL] [Abstract][Full Text] [Related]
19. Bacterial communities on electron-beam Pt-deposited electrodes in a mediator-less microbial fuel cell. Park HI; Sanchez D; Cho SK; Yun M Environ Sci Technol; 2008 Aug; 42(16):6243-9. PubMed ID: 18767694 [TBL] [Abstract][Full Text] [Related]
20. Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Ishii S; Watanabe K; Yabuki S; Logan BE; Sekiguchi Y Appl Environ Microbiol; 2008 Dec; 74(23):7348-55. PubMed ID: 18836002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]