BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21131949)

  • 1. The mechanism of sodium and substrate release from the binding pocket of vSGLT.
    Watanabe A; Choe S; Chaptal V; Rosenberg JM; Wright EM; Grabe M; Abramson J
    Nature; 2010 Dec; 468(7326):988-91. PubMed ID: 21131949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sodium/galactose symporter crystal structure is a dynamic, not so occluded state.
    Zomot E; Bahar I
    Mol Biosyst; 2010 Jun; 6(6):1040-6. PubMed ID: 20358053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a second substrate-binding site in solute-sodium symporters.
    Li Z; Lee AS; Bracher S; Jung H; Paz A; Kumar JP; Abramson J; Quick M; Shi L
    J Biol Chem; 2015 Jan; 290(1):127-41. PubMed ID: 25398883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved tyrosine in the first transmembrane segment of solute:sodium symporters is involved in Na+-coupled substrate co-transport.
    Mazier S; Quick M; Shi L
    J Biol Chem; 2011 Aug; 286(33):29347-29355. PubMed ID: 21705334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport.
    Faham S; Watanabe A; Besserer GM; Cascio D; Specht A; Hirayama BA; Wright EM; Abramson J
    Science; 2008 Aug; 321(5890):810-4. PubMed ID: 18599740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational transitions of the sodium-dependent sugar transporter, vSGLT.
    Paz A; Claxton DP; Kumar JP; Kazmier K; Bisignano P; Sharma S; Nolte SA; Liwag TM; Nayak V; Wright EM; Grabe M; Mchaourab HS; Abramson J
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2742-E2751. PubMed ID: 29507231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water permeation through the sodium-dependent galactose cotransporter vSGLT.
    Choe S; Rosenberg JM; Abramson J; Wright EM; Grabe M
    Biophys J; 2010 Oct; 99(7):L56-8. PubMed ID: 20923633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A gate-free pathway for substrate release from the inward-facing state of the Na⁺-galactose transporter.
    Li J; Tajkhorshid E
    Biochim Biophys Acta; 2012 Feb; 1818(2):263-71. PubMed ID: 21978597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter.
    Weyand S; Shimamura T; Yajima S; Suzuki S; Mirza O; Krusong K; Carpenter EP; Rutherford NG; Hadden JM; O'Reilly J; Ma P; Saidijam M; Patching SG; Hope RJ; Norbertczak HT; Roach PC; Iwata S; Henderson PJ; Cameron AD
    Science; 2008 Oct; 322(5902):709-13. PubMed ID: 18927357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metadynamics simulations reveal a Na+ independent exiting path of galactose for the inward-facing conformation of vSGLT.
    Bisha I; Rodriguez A; Laio A; Magistrato A
    PLoS Comput Biol; 2014 Dec; 10(12):e1004017. PubMed ID: 25522004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reinvestigation of the secondary structure of functionally active vSGLT, the vibrio sodium/galactose cotransporter.
    Turk E; Gasymov OK; Lanza S; Horwitz J; Wright EM
    Biochemistry; 2006 Feb; 45(5):1470-9. PubMed ID: 16445289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ligand-dependent conformational change of the Na+/galactose cotransporter of Vibrio parahaemolyticus, monitored by tryptophan fluorescence.
    Veenstra M; Turk E; Wright EM
    J Membr Biol; 2002 Feb; 185(3):249-55. PubMed ID: 11891582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of Vibrio parahaemolyticus vSGLT: a model for sodium-coupled sugar cotransporters.
    Turk E; Kim O; le Coutre J; Whitelegge JP; Eskandari S; Lam JT; Kreman M; Zampighi G; Faull KF; Wright EM
    J Biol Chem; 2000 Aug; 275(33):25711-6. PubMed ID: 10835424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT.
    Kalayil S; Schulze S; Kühlbrandt W
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17296-301. PubMed ID: 24101465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1.
    Shimamura T; Weyand S; Beckstein O; Rutherford NG; Hadden JM; Sharples D; Sansom MS; Iwata S; Henderson PJ; Cameron AD
    Science; 2010 Apr; 328(5977):470-3. PubMed ID: 20413494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-induced differences in secondary structure of the Vibrio parahaemolyticus Na+/galactose cotransporter.
    le Coutre J; Turk E; Kaback HR; Wright EM
    Biochemistry; 2002 Jun; 41(25):8082-6. PubMed ID: 12069600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sodium/iodide symporter: state of the art of its molecular characterization.
    Darrouzet E; Lindenthal S; Marcellin D; Pellequer JL; Pourcher T
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):244-53. PubMed ID: 23988430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural determinants of water permeation through the sodium-galactose transporter vSGLT.
    Adelman JL; Sheng Y; Choe S; Abramson J; Wright EM; Rosenberg JM; Grabe M
    Biophys J; 2014 Mar; 106(6):1280-9. PubMed ID: 24655503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural biology. Symmetric transporters for asymmetric transport.
    Karpowich NK; Wang DN
    Science; 2008 Aug; 321(5890):781-2. PubMed ID: 18687947
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of transmembrane segment 5 (TM5) in Na2 release and the conformational transition of neurotransmitter:sodium symporters toward the inward-open state.
    Stolzenberg S; Li Z; Quick M; Malinauskaite L; Nissen P; Weinstein H; Javitch JA; Shi L
    J Biol Chem; 2017 May; 292(18):7372-7384. PubMed ID: 28320858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.