These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. A CA(+) pair adjacent to a sheared GA or AA pair stabilizes size-symmetric RNA internal loops. Chen G; Kennedy SD; Turner DH Biochemistry; 2009 Jun; 48(24):5738-52. PubMed ID: 19485416 [TBL] [Abstract][Full Text] [Related]
43. The first example of a Hoogsteen base-paired DNA duplex in dynamic equilibrium with a Watson-Crick base-paired duplex--a structural (NMR), kinetic and thermodynamic study. Isaksson J; Zamaratski E; Maltseva TV; Agback P; Kumar A; Chattopadhyaya J J Biomol Struct Dyn; 2001 Jun; 18(6):783-806. PubMed ID: 11444368 [TBL] [Abstract][Full Text] [Related]
44. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Holbrook SR; Cheong C; Tinoco I; Kim SH Nature; 1991 Oct; 353(6344):579-81. PubMed ID: 1922368 [TBL] [Abstract][Full Text] [Related]
45. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life. Takahashi S; Sugimoto N Acc Chem Res; 2021 May; 54(9):2110-2120. PubMed ID: 33591181 [TBL] [Abstract][Full Text] [Related]
46. Molecular recognition in purine-rich internal loops: thermodynamic, structural, and dynamic consequences of purine for adenine substitutions in 5'(rGGCAAGCCU)2. Znosko BM; Burkard ME; Krugh TR; Turner DH Biochemistry; 2002 Dec; 41(50):14978-87. PubMed ID: 12475247 [TBL] [Abstract][Full Text] [Related]
47. Structure-mapping of the hairpin ribozyme. Magnesium-dependent folding and evidence for tertiary interactions within the ribozyme-substrate complex. Butcher SE; Burke JM J Mol Biol; 1994 Nov; 244(1):52-63. PubMed ID: 7966321 [TBL] [Abstract][Full Text] [Related]
48. Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. Brunel C; Romby P; Westhof E; Ehresmann C; Ehresmann B J Mol Biol; 1991 Sep; 221(1):293-308. PubMed ID: 1717695 [TBL] [Abstract][Full Text] [Related]
49. Isostericity and tautomerism of base pairs in nucleic acids. Westhof E FEBS Lett; 2014 Aug; 588(15):2464-9. PubMed ID: 24950426 [TBL] [Abstract][Full Text] [Related]
50. NMR structure of varkud satellite ribozyme stem-loop V in the presence of magnesium ions and localization of metal-binding sites. Campbell DO; Bouchard P; Desjardins G; Legault P Biochemistry; 2006 Sep; 45(35):10591-605. PubMed ID: 16939211 [TBL] [Abstract][Full Text] [Related]
51. NMR characterisation of a highly conserved secondary structural RNA motif of Halobacterium halobium 23S rRNA. King J; Shammas C; Nareen M; Lelli M; Ramesh V Org Biomol Chem; 2013 May; 11(20):3382-92. PubMed ID: 23563359 [TBL] [Abstract][Full Text] [Related]
52. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family. Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704 [TBL] [Abstract][Full Text] [Related]
53. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs. Burkard ME; Kierzek R; Turner DH J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596 [TBL] [Abstract][Full Text] [Related]
54. Structure of an internal loop motif with three consecutive U•U mismatches from stem-loop 1 in the 3'-UTR of the SARS-CoV-2 genomic RNA. Vögele J; Duchardt-Ferner E; Bains JK; Knezic B; Wacker A; Sich C; Weigand JE; Šponer J; Schwalbe H; Krepl M; Wöhnert J Nucleic Acids Res; 2024 Jun; 52(11):6687-6706. PubMed ID: 38783391 [TBL] [Abstract][Full Text] [Related]
55. Theoretical study of the scalar coupling constants across the noncovalent contacts in RNA base pairs: the cis- and trans-watson-crick/sugar edge base pair family. Vokacova Z; Sponer J; Sponer JE; Sychrovský V J Phys Chem B; 2007 Sep; 111(36):10813-24. PubMed ID: 17713941 [TBL] [Abstract][Full Text] [Related]
56. Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA. Kim NK; Zhang Q; Zhou J; Theimer CA; Peterson RD; Feigon J J Mol Biol; 2008 Dec; 384(5):1249-61. PubMed ID: 18950640 [TBL] [Abstract][Full Text] [Related]
57. NMR structures of double loops of an RNA aptamer against mammalian initiation factor 4A. Sakamoto T; Oguro A; Kawai G; Ohtsu T; Nakamura Y Nucleic Acids Res; 2005; 33(2):745-54. PubMed ID: 15687383 [TBL] [Abstract][Full Text] [Related]
58. Hinge-like motions in RNA kink-turns: the role of the second a-minor motif and nominally unpaired bases. Rázga F; Koca J; Sponer J; Leontis NB Biophys J; 2005 May; 88(5):3466-85. PubMed ID: 15722438 [TBL] [Abstract][Full Text] [Related]
59. Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction. Maiti S; Mukherjee D; Roy P; Chakrabarti J; Bhattacharyya D Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129600. PubMed ID: 32179130 [TBL] [Abstract][Full Text] [Related]
60. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides. Morosyuk SV; Lee K; SantaLucia J; Cunningham PR J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]