These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 21132111)
41. Neutrophil adhesion on phosphorylcholine-containing polyurethanes. Yung LY; Cooper SL Biomaterials; 1998; 19(1-3):31-40. PubMed ID: 9678847 [TBL] [Abstract][Full Text] [Related]
42. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. Naureen B; Haseeb ASMA; Basirun WJ; Muhamad F Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111228. PubMed ID: 33254956 [TBL] [Abstract][Full Text] [Related]
43. Effect of Aromatic Chain Extenders on Polyurea and Polyurethane Coatings Designed for Defense Applications. Toader G; Moldovan AE; Diacon A; Dirloman FM; Rusen E; Podaru A; Rotariu T; Ginghina RE; Hoza OE Polymers (Basel); 2023 Feb; 15(3):. PubMed ID: 36772057 [TBL] [Abstract][Full Text] [Related]
44. Synthesis and Characterization of Controlled Nitric Oxide Release from Hopkins SP; Frost MC Bioengineering (Basel); 2018 Sep; 5(3):. PubMed ID: 30189614 [TBL] [Abstract][Full Text] [Related]
45. Self-assembled aliphatic chain extended polyurethane nanobiohybrids: emerging hemocompatible biomaterials for sustained drug delivery. Mishra A; Singh SK; Dash D; Aswal VK; Maiti B; Misra M; Maiti P Acta Biomater; 2014 May; 10(5):2133-46. PubMed ID: 24374322 [TBL] [Abstract][Full Text] [Related]
46. Synthesis of Nitric Oxide-Releasing Polyurethanes with S-Nitrosothiol-Containing Hard and Soft Segments. Coneski PN; Schoenfisch MH Polym Chem; 2011 Apr; 2(4):906-913. PubMed ID: 23418409 [TBL] [Abstract][Full Text] [Related]
47. Use of surface-modifying macromolecules to enhance the biostability of segmented polyurethanes. Tang YW; Santerre JP; Labow RS; Taylor DG J Biomed Mater Res; 1997 Jun; 35(3):371-81. PubMed ID: 9138071 [TBL] [Abstract][Full Text] [Related]
48. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft. Han DK; Park K; Park KD; Ahn KD; Kim YH Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836 [TBL] [Abstract][Full Text] [Related]
49. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Frost MC; Reynolds MM; Meyerhoff ME Biomaterials; 2005 May; 26(14):1685-93. PubMed ID: 15576142 [TBL] [Abstract][Full Text] [Related]
51. Synthesis and characterization of polymethacrylate-based nitric oxide donors. Parzuchowski PG; Frost MC; Meyerhoff ME J Am Chem Soc; 2002 Oct; 124(41):12182-91. PubMed ID: 12371858 [TBL] [Abstract][Full Text] [Related]
52. Intravascular glucose/lactate sensors prepared with nitric oxide releasing poly(lactide-co-glycolide)-based coatings for enhanced biocompatibility. Yan Q; Major TC; Bartlett RH; Meyerhoff ME Biosens Bioelectron; 2011 Jul; 26(11):4276-82. PubMed ID: 21592764 [TBL] [Abstract][Full Text] [Related]
53. Improving the elasticity and cytophilicity of biodegradable polyurethane by changing chain extender. Zhang C; Zhang N; Wen X J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):335-44. PubMed ID: 16767730 [TBL] [Abstract][Full Text] [Related]
54. Effects of oligoethylene oxide monoalkyl(aryl) alcohol ether grafting on the surface properties and blood compatibility of a polyurethane. Lim F; Yu XH; Cooper SL Biomaterials; 1993 Jun; 14(7):537-45. PubMed ID: 8329527 [TBL] [Abstract][Full Text] [Related]
55. High-Density Three-Dimensional Network of Covalently Linked Nitric Oxide Donors to Achieve Antibacterial and Antibiofilm Surfaces. Wang L; Hou Z; Pranantyo D; Kang ET; Chan-Park M ACS Appl Mater Interfaces; 2021 Jul; 13(29):33745-33755. PubMed ID: 34278776 [TBL] [Abstract][Full Text] [Related]