These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 21132216)
1. Hierarchical Cu4V2.15O9.38 micro-/nanostructures: a lithium intercalating electrode material. Zhou L; Cui W; Wu J; Zhao Q; Li H; Xia Y; Wang Y; Yu C Nanoscale; 2011 Mar; 3(3):999-1003. PubMed ID: 21132216 [TBL] [Abstract][Full Text] [Related]
2. [100] Directed Cu-doped h-CoO nanorods: elucidation of the growth mechanism and application to lithium-ion batteries. Nam KM; Choi YC; Jung SC; Kim YI; Jo MR; Park SH; Kang YM; Han YK; Park JT Nanoscale; 2012 Jan; 4(2):473-7. PubMed ID: 22095097 [TBL] [Abstract][Full Text] [Related]
3. Electrospun hierarchical LiV3O8 nanofibers assembled from nanosheets with exposed {100} facets and their enhanced performance in aqueous lithium-ion batteries. Liang L; Zhou M; Xie Y Chem Asian J; 2012 Mar; 7(3):565-71. PubMed ID: 22246636 [TBL] [Abstract][Full Text] [Related]
4. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594 [TBL] [Abstract][Full Text] [Related]
5. Ternary Cu₂SnS₃ cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity. Qu B; Li H; Zhang M; Mei L; Chen L; Wang Y; Li Q; Wang T Nanoscale; 2011 Oct; 3(10):4389-93. PubMed ID: 21927737 [TBL] [Abstract][Full Text] [Related]
6. Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries. Li L; Seng KH; Chen Z; Guo Z; Liu HK Nanoscale; 2013 Mar; 5(5):1922-8. PubMed ID: 23354317 [TBL] [Abstract][Full Text] [Related]
7. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Yu H; Rui X; Tan H; Chen J; Huang X; Xu C; Liu W; Yu DY; Hng HH; Hoster HE; Yan Q Nanoscale; 2013 Jun; 5(11):4937-43. PubMed ID: 23629762 [TBL] [Abstract][Full Text] [Related]
8. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? C OA; Caballero Á; Morales J Nanoscale; 2012 Mar; 4(6):2083-92. PubMed ID: 22358220 [TBL] [Abstract][Full Text] [Related]
9. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729 [TBL] [Abstract][Full Text] [Related]
10. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. Wang XL; Han WQ ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292 [TBL] [Abstract][Full Text] [Related]
11. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime. Zhou S; Yang X; Lin Y; Xie J; Wang D ACS Nano; 2012 Jan; 6(1):919-24. PubMed ID: 22176699 [TBL] [Abstract][Full Text] [Related]
12. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries. Park J; Kim GP; Nam I; Park S; Yi J Nanotechnology; 2013 Jan; 24(2):025602. PubMed ID: 23220858 [TBL] [Abstract][Full Text] [Related]
13. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Wang Z; Su F; Madhavi S; Lou XW Nanoscale; 2011 Apr; 3(4):1618-23. PubMed ID: 21286653 [TBL] [Abstract][Full Text] [Related]
14. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries. Chen W; Zhu Z; Li S; Chen C; Yan L Nanoscale; 2012 Mar; 4(6):2124-9. PubMed ID: 22334350 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery. Qiu MC; Yang LW; Qi X; Li J; Zhong JX ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626 [TBL] [Abstract][Full Text] [Related]
16. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Rui X; Zhu J; Sim D; Xu C; Zeng Y; Hng HH; Lim TM; Yan Q Nanoscale; 2011 Nov; 3(11):4752-8. PubMed ID: 21989744 [TBL] [Abstract][Full Text] [Related]
17. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185 [TBL] [Abstract][Full Text] [Related]
18. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732 [TBL] [Abstract][Full Text] [Related]
19. Photothermally reduced graphene as high-power anodes for lithium-ion batteries. Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216 [TBL] [Abstract][Full Text] [Related]
20. Facile synthesis of hierarchical MoS₂ microspheres composed of few-layered nanosheets and their lithium storage properties. Ding S; Zhang D; Chen JS; Lou XW Nanoscale; 2012 Jan; 4(1):95-8. PubMed ID: 22116582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]