These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21132351)

  • 1. Immobilization and bioactivity evaluation of FGF-1 and FGF-2 on powdered silicon-doped hydroxyapatite and their scaffolds for bone tissue engineering.
    Feito MJ; Lozano RM; Alcaide M; Ramírez-Santillán C; Arcos D; Vallet-Regí M; Portolés MT
    J Mater Sci Mater Med; 2011 Feb; 22(2):405-16. PubMed ID: 21132351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signaling pathways of immobilized FGF-2 on silicon-substituted hydroxyapatite.
    de la Concepción Matesanz M; Feito MJ; Ramírez-Santillán C; Lozano RM; Sánchez-Salcedo S; Arcos D; Vallet-Regí M; Portolés MT
    Macromol Biosci; 2012 Apr; 12(4):446-53. PubMed ID: 22389324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon-incorporated nanohydroxyapatite-reinforced poly(ε-caprolactone) film to enhance osteogenesis for bone tissue engineering applications.
    Lei T; Zhang W; Qian H; Lim PN; Thian ES; Lei P; Hu Y; Wang Z
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110714. PubMed ID: 31870518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteostatin improves the osteogenic activity of fibroblast growth factor-2 immobilized in Si-doped hydroxyapatite in osteoblastic cells.
    Lozano D; Feito MJ; Portal-Núñez S; Lozano RM; Matesanz MC; Serrano MC; Vallet-Regí M; Portolés MT; Esbrit P
    Acta Biomater; 2012 Jul; 8(7):2770-7. PubMed ID: 22487933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of multisubstituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications.
    Baba Ismail YM; Wimpenny I; Bretcanu O; Dalgarno K; El Haj AJ
    J Biomed Mater Res A; 2017 Jun; 105(6):1775-1785. PubMed ID: 28198131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine.
    Vila M; García A; Girotti A; Alonso M; Rodríguez-Cabello JC; González-Vázquez A; Planell JA; Engel E; Buján J; García-Honduvilla N; Vallet-Regí M
    Acta Biomater; 2016 Nov; 45():349-356. PubMed ID: 27639311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications.
    Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells.
    López-Alvarez M; Solla EL; González P; Serra J; León B; Marques AP; Reis RL
    J Mater Sci Mater Med; 2009 May; 20(5):1131-6. PubMed ID: 19089599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pathway to intelligent implants: osteoblast response to nano silicon-doped hydroxyapatite patterning.
    Munir G; Koller G; Di Silvio L; Edirisinghe MJ; Bonfield W; Huang J
    J R Soc Interface; 2011 May; 8(58):678-88. PubMed ID: 21208969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid core-shell scaffolds for bone tissue engineering.
    Kareem MM; Hodgkinson T; Sanchez MS; Dalby MJ; Tanner KE
    Biomed Mater; 2019 Jan; 14(2):025008. PubMed ID: 30609417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of osteoblasts and preosteoblasts to calcium deficient and Si substituted hydroxyapatites treated at different temperatures.
    Matesanz MC; Linares J; Oñaderra M; Feito MJ; Martínez-Vázquez FJ; Sánchez-Salcedo S; Arcos D; Portolés MT; Vallet-Regí M
    Colloids Surf B Biointerfaces; 2015 Sep; 133():304-13. PubMed ID: 26123851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts.
    Gu Z; Zhang X; Li L; Wang Q; Yu X; Feng T
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):274-81. PubMed ID: 25428072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetron co-sputtered silicon-containing hydroxyapatite thin films--an in vitro study.
    Thian ES; Huang J; Best SM; Barber ZH; Bonfield W
    Biomaterials; 2005 Jun; 26(16):2947-56. PubMed ID: 15603789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold.
    Wang Y; Yang X; Gu Z; Qin H; Li L; Liu J; Yu X
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():185-192. PubMed ID: 27207053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation.
    Zhou G; Liu S; Ma Y; Xu W; Meng W; Lin X; Wang W; Wang S; Zhang J
    Int J Nanomedicine; 2017; 12():7577-7588. PubMed ID: 29075116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro response of human osteoblasts to multi-step sol-gel derived bioactive glass nanoparticles for bone tissue engineering.
    Fan JP; Kalia P; Di Silvio L; Huang J
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():206-14. PubMed ID: 24433905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.