BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 21132369)

  • 21. Spatially varying material properties of the rat caudal intervertebral disc.
    Ho MM; Kelly TA; Guo XE; Ateshian GA; Hung CT
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E486-93. PubMed ID: 16816748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between streaming potential and compressive stress in bovine intervertebral tissue.
    Fujisaki K; Tadano S; Asano N
    J Biomech; 2011 Sep; 44(13):2477-81. PubMed ID: 21763660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical loading affects the energy metabolism of intervertebral disc cells.
    Fernando HN; Czamanski J; Yuan TY; Gu W; Salahadin A; Huang CY
    J Orthop Res; 2011 Nov; 29(11):1634-41. PubMed ID: 21484859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of cartilaginous matrix accumulation on viscoelastic response of chondrocyte/agarose constructs under dynamic compressive and shear loading.
    Miyata S; Tateishi T; Ushida T
    J Biomech Eng; 2008 Oct; 130(5):051016. PubMed ID: 19045523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.
    Adachi T; Kameo Y; Hojo M
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2669-82. PubMed ID: 20439268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical stimulation alters pleiotrophin and aggrecan expression by human intervertebral disc cells and influences their capacity to stimulate endothelial migration.
    Neidlinger-Wilke C; Liedert A; Wuertz K; Buser Z; Rinkler C; Käfer W; Ignatius A; Claes L; Roberts S; Johnson WE
    Spine (Phila Pa 1976); 2009 Apr; 34(7):663-9. PubMed ID: 19333097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression.
    Wuertz K; Godburn K; MacLean JJ; Barbir A; Donnelly JS; Roughley PJ; Alini M; Iatridis JC
    J Orthop Res; 2009 Sep; 27(9):1235-42. PubMed ID: 19274755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Translational challenges for the development of a novel nucleus pulposus substitute: Experimental results from biomechanical and in vivo studies.
    Detiger SE; de Bakker JY; Emanuel KS; Schmitz M; Vergroesen PP; van der Veen AJ; Mazel C; Smit TH
    J Biomater Appl; 2016 Feb; 30(7):983-94. PubMed ID: 26494611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.
    Gooyers CE; McMillan RD; Howarth SJ; Callaghan JP
    Spine (Phila Pa 1976); 2012 Aug; 37(17):E1023-9. PubMed ID: 22472807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability.
    Périé D; Korda D; Iatridis JC
    J Biomech; 2005 Nov; 38(11):2164-71. PubMed ID: 16154403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro.
    Masuoka K; Michalek AJ; MacLean JJ; Stokes IA; Iatridis JC
    Spine (Phila Pa 1976); 2007 Aug; 32(18):1974-9. PubMed ID: 17700443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Static and dynamic compression application and removal on the intervertebral discs of growing rats.
    Ménard AL; Grimard G; Massol E; Londono I; Moldovan F; Villemure I
    J Orthop Res; 2016 Feb; 34(2):290-8. PubMed ID: 26213189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis.
    Yao H; Gu WY
    Biorheology; 2006; 43(3,4):323-35. PubMed ID: 16912405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linear and Nonlinear Biphasic Mechanical Properties of Goat IVDs Under Different Swelling Conditions in Confined Compression.
    Rasoulian A; Vakili-Tahami F; Smit TH
    Ann Biomed Eng; 2021 Dec; 49(12):3296-3309. PubMed ID: 34480262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of tension-compression nonlinearity on solute transport in charged hydrated fibrous tissues under dynamic unconfined compression.
    Huang CY; Gu WY
    J Biomech Eng; 2007 Jun; 129(3):423-9. PubMed ID: 17536910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Damping properties of the nucleus pulposus.
    Vogel A; Pioletti DP
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):861-5. PubMed ID: 22742820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical disc culture system: feasibility study using rat intervertebral discs.
    Ramakrishnan PS; Hong J; Martin JA; Kurriger GL; Buckwalter JA; Lim TH
    Proc Inst Mech Eng H; 2011 Jun; 225(6):611-20. PubMed ID: 22034744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of static compression with different loading magnitudes and durations on the intervertebral disc: an in vivo rat-tail study.
    Lai A; Chow DH; Siu SW; Leung SS; Lau EF; Tang FH; Pope MH
    Spine (Phila Pa 1976); 2008 Dec; 33(25):2721-7. PubMed ID: 19050577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and application of an oscillatory compression device for cell constructs.
    Cassino TR; Anderson R; Love BJ; Huckle WR; Seamans DK; Forsten-Williams K
    Biotechnol Bioeng; 2007 Sep; 98(1):211-20. PubMed ID: 17657777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.