BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 21132369)

  • 41. Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis.
    Wu JZ; Dong RG; Smutz WP; Schopper AW
    Biomed Mater Eng; 2003; 13(4):373-85. PubMed ID: 14646052
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression.
    Johannessen W; Elliott DM
    Spine (Phila Pa 1976); 2005 Dec; 30(24):E724-9. PubMed ID: 16371889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitivity of multi-parametric MRI to the compressive state of the isolated intervertebral discs.
    Manac'h YG; Périé D; Gilbert G; Beaudoin G
    Magn Reson Imaging; 2013 Jan; 31(1):36-43. PubMed ID: 22902468
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of mitochondrial pathway in compression-induced apoptosis of nucleus pulposus cells.
    Ding F; Shao ZW; Yang SH; Wu Q; Gao F; Xiong LM
    Apoptosis; 2012 Jun; 17(6):579-90. PubMed ID: 22392483
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery.
    Vresilovic EJ; Johannessen W; Elliott DM
    J Biomech Eng; 2006 Dec; 128(6):823-9. PubMed ID: 17154681
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Viscoelastic characterization of the porcine temporomandibular joint disc under unconfined compression.
    Allen KD; Athanasiou KA
    J Biomech; 2006; 39(2):312-22. PubMed ID: 16321633
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds.
    Kisiday JD; Jin M; DiMicco MA; Kurz B; Grodzinsky AJ
    J Biomech; 2004 May; 37(5):595-604. PubMed ID: 15046988
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cartilage responses to a novel triaxial mechanostimulatory culture system.
    Heiner AD; Martin JA
    J Biomech; 2004 May; 37(5):689-95. PubMed ID: 15046998
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The stress and strain states of the posterior annulus under flexion.
    Hollingsworth NT; Wagner DR
    Spine (Phila Pa 1976); 2012 Aug; 37(18):E1134-9. PubMed ID: 22543250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solid-extracellular fluid interaction and damage in the mechanical response of rat brain tissue under confined compression.
    Haslach HW; Leahy LN; Riley P; Gullapalli R; Xu S; Hsieh AH
    J Mech Behav Biomed Mater; 2014 Jan; 29():138-50. PubMed ID: 24084652
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alterations of ADAMTSs and TIMP-3 in human nucleus pulposus cells subjected to compressive load: Implications in the pathogenesis of human intervertebral disc degeneration.
    Huang M; Wang HQ; Zhang Q; Yan XD; Hao M; Luo ZJ
    J Orthop Res; 2012 Feb; 30(2):267-73. PubMed ID: 21809381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the poisson's ratio of the nucleus pulposus.
    Farrell MD; Riches PE
    J Biomech Eng; 2013 Oct; 135(10):104501. PubMed ID: 24763735
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic compressive loading of image-guided tissue engineered meniscal constructs.
    Ballyns JJ; Bonassar LJ
    J Biomech; 2011 Feb; 44(3):509-16. PubMed ID: 20888562
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in nuclear composition following cyclic compression of the intervertebral disc in an in vivo rat-tail model.
    Ching CT; Chow DH; Yao FY; Holmes AD
    Med Eng Phys; 2004 Sep; 26(7):587-94. PubMed ID: 15271286
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluid flow and convective transport of solutes within the intervertebral disc.
    Ferguson SJ; Ito K; Nolte LP
    J Biomech; 2004 Feb; 37(2):213-21. PubMed ID: 14706324
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery.
    Johannessen W; Vresilovic EJ; Wright AC; Elliott DM
    Ann Biomed Eng; 2004 Jan; 32(1):70-6. PubMed ID: 14964723
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces.
    Pedersen JA; Lichter S; Swartz MA
    J Biomech; 2010 Mar; 43(5):900-5. PubMed ID: 20006339
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Osteoblast: a cell under compression.
    Sanchez C; Gabay O; Henrotin YE; Berenbaum F
    Biomed Mater Eng; 2008; 18(4-5):221-4. PubMed ID: 19065025
    [No Abstract]   [Full Text] [Related]  

  • 60. Dynamic shear stress in parallel-plate flow chambers.
    Bacabac RG; Smit TH; Cowin SC; Van Loon JJ; Nieuwstadt FT; Heethaar R; Klein-Nulend J
    J Biomech; 2005 Jan; 38(1):159-67. PubMed ID: 15519352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.