These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21133078)

  • 1. Melting of Ni and Fe nanoparticles: a molecular dynamics study with application to carbon nanotube synthesis.
    Joshi NP; Spearot DE; Bhat D
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5587-93. PubMed ID: 21133078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size Dependent Phase Diagrams of Nickel-Carbon Nanoparticles.
    Magnin Y; Zappelli A; Amara H; Ducastelle F; Bichara C
    Phys Rev Lett; 2015 Nov; 115(20):205502. PubMed ID: 26613451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinum nanoparticles on carbonaceous materials: the effect of support geometry on nanoparticle mobility, morphology, and melting.
    Morrow BH; Striolo A
    Nanotechnology; 2008 May; 19(19):195711. PubMed ID: 21825729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase transition in substrate-supported molybdenum nanoparticles: a molecular dynamics study.
    Shibuta Y; Suzuki T
    Phys Chem Chem Phys; 2010 Jan; 12(3):731-9. PubMed ID: 20066359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic evolution of supported metal nanocatalyst/carbon structure during single-walled carbon nanotube growth.
    Gómez-Gualdrón DA; McKenzie GD; Alvarado JF; Balbuena PB
    ACS Nano; 2012 Jan; 6(1):720-35. PubMed ID: 22133430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size and chemical order dependence of magnetic-ordering temperature and spin structure in Fe@Ni and Ni@Fe core-shell nanoparticles.
    Mokkath JH
    Phys Chem Chem Phys; 2020 Mar; 22(11):6275-6281. PubMed ID: 32129368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of Interatomic Potentials Using the Crystal-GRID Method on Oriented Single Crystals of Ni, Fe, and Cr.
    Stritt N; Jolie J; Jentschel M; Börner HG; Doll C
    J Res Natl Inst Stand Technol; 2000; 105(1):71-80. PubMed ID: 27551589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of the melting of aluminum nanoparticles.
    Alavi S; Thompson DL
    J Phys Chem A; 2006 Feb; 110(4):1518-23. PubMed ID: 16435812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of silver nanocluster supported on carbon nanotube.
    Akbarzadeh H; Yaghoubi H
    J Colloid Interface Sci; 2014 Mar; 418():178-84. PubMed ID: 24461833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SWNT nucleation from carbon-coated SiO2 nanoparticles via a vapor-solid-solid mechanism.
    Page AJ; Chandrakumar KR; Irle S; Morokuma K
    J Am Chem Soc; 2011 Jan; 133(3):621-8. PubMed ID: 21142071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.
    Ding F; Rosén A; Bolton K
    J Chem Phys; 2004 Aug; 121(6):2775-9. PubMed ID: 15281881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can single-walled carbon nanotube diameter be defined by catalyst particle diameter?
    Diaz MC; Jiang H; Kauppinen E; Sharma R; Balbuena PB
    J Phys Chem C Nanomater Interfaces; 2019; 123(50):. PubMed ID: 33029278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconciling simulated melting and ground-state properties of metals with a modified embedded-atom method potential.
    Sushko GB; Verkhovtsev AV; Kexel Ch; Korol AV; Schramm S; Solov'yov AV
    J Phys Condens Matter; 2016 Apr; 28(14):145201. PubMed ID: 26977922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation.
    Shin YK; Kwak H; Zou C; Vasenkov AV; van Duin AC
    J Phys Chem A; 2012 Dec; 116(49):12163-74. PubMed ID: 23167515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of added oversized elements on the microstructure of binary alloy nanoparticles.
    Ju SP; Weng CI; Chang YY; Chen YY
    Nanotechnology; 2006 Sep; 17(18):4748-57. PubMed ID: 21727608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of melting and sintering of Si nanoparticles: a comparison of different force fields and computational models.
    Sementa L; Barcaro G; Monti S; Carravetta V
    Phys Chem Chem Phys; 2018 Jan; 20(3):1707-1715. PubMed ID: 29265136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles.
    Page AJ; Yamane H; Ohta Y; Irle S; Morokuma K
    J Am Chem Soc; 2010 Nov; 132(44):15699-707. PubMed ID: 20961094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters.
    Li G; Wang Q; Sui X; Wang K; Wu C; He J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21729-39. PubMed ID: 26234423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEAM potential-based MD simulations of melting transition on Ni surfaces.
    Jin HS; Jong GB; Ri KH; Kim DK; Yang H
    J Mol Model; 2022 Oct; 28(11):368. PubMed ID: 36305968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring the carbon nanostructures grown on the surface of Ni-Al bimetallic nanoparticles in the gas phase.
    Kim WD; Ahn JY; Lee DG; Lee HW; Hong SW; Park HS; Kim SH
    J Colloid Interface Sci; 2011 Oct; 362(2):261-6. PubMed ID: 21757200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.