These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 21133350)
1. Identification of novel proteins from the venom of a cryptic snake Drysdalia coronoides by a combined transcriptomics and proteomics approach. Chatrath ST; Chapeaurouge A; Lin Q; Lim TK; Dunstan N; Mirtschin P; Kumar PP; Kini RM J Proteome Res; 2011 Feb; 10(2):739-50. PubMed ID: 21133350 [TBL] [Abstract][Full Text] [Related]
2. Identification of a novel family of snake venom proteins Veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. OmPraba G; Chapeaurouge A; Doley R; Devi KR; Padmanaban P; Venkatraman C; Velmurugan D; Lin Q; Kini RM J Proteome Res; 2010 Apr; 9(4):1882-93. PubMed ID: 20158271 [TBL] [Abstract][Full Text] [Related]
3. Molecular isoforms of cobra venom factor-like proteins in the venom of Austrelaps superbus. Rehana S; Manjunatha Kini R Toxicon; 2007 Jul; 50(1):32-52. PubMed ID: 17412383 [TBL] [Abstract][Full Text] [Related]
5. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. Calvete JJ; Fasoli E; Sanz L; Boschetti E; Righetti PG J Proteome Res; 2009 Jun; 8(6):3055-67. PubMed ID: 19371136 [TBL] [Abstract][Full Text] [Related]
6. Molecular diversification of peptide toxins from the tarantula Haplopelma hainanum (Ornithoctonus hainana) venom based on transcriptomic, peptidomic, and genomic analyses. Tang X; Zhang Y; Hu W; Xu D; Tao H; Yang X; Li Y; Jiang L; Liang S J Proteome Res; 2010 May; 9(5):2550-64. PubMed ID: 20192277 [TBL] [Abstract][Full Text] [Related]
7. Snake venomics of Central American pitvipers: clues for rationalizing the distinct envenomation profiles of Atropoides nummifer and Atropoides picadoi. Angulo Y; Escolano J; Lomonte B; Gutiérrez JM; Sanz L; Calvete JJ J Proteome Res; 2008 Feb; 7(2):708-19. PubMed ID: 18161938 [TBL] [Abstract][Full Text] [Related]
8. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Fox JW; Ma L; Nelson K; Sherman NE; Serrano SM Toxicon; 2006 May; 47(6):700-14. PubMed ID: 16574175 [TBL] [Abstract][Full Text] [Related]
9. Cloning and characterisation of novel cystatins from elapid snake venom glands. Richards R; St Pierre L; Trabi M; Johnson LA; de Jersey J; Masci PP; Lavin MF Biochimie; 2011 Apr; 93(4):659-68. PubMed ID: 21172403 [TBL] [Abstract][Full Text] [Related]
10. Comparison of proteomic profiles of the venoms of two of the 'Big Four' snakes of India, the Indian cobra (Naja naja) and the common krait (Bungarus caeruleus), and analyses of their toxins. Choudhury M; McCleary RJR; Kesherwani M; Kini RM; Velmurugan D Toxicon; 2017 Sep; 135():33-42. PubMed ID: 28602829 [TBL] [Abstract][Full Text] [Related]
11. "Anatomical" view of the protein composition and protein characteristics for Gloydius shedaoensis snake venom via proteomics approach. Liu S; Yang F; Zhang Q; Sun MZ; Gao Y; Shao S Anat Rec (Hoboken); 2011 Feb; 294(2):273-82. PubMed ID: 21235002 [TBL] [Abstract][Full Text] [Related]
12. Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Li S; Wang J; Zhang X; Ren Y; Wang N; Zhao K; Chen X; Zhao C; Li X; Shao J; Yin J; West MB; Xu N; Liu S Biochem J; 2004 Nov; 384(Pt 1):119-27. PubMed ID: 15285721 [TBL] [Abstract][Full Text] [Related]
13. Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa. Calvete JJ; Escolano J; Sanz L J Proteome Res; 2007 Jul; 6(7):2732-45. PubMed ID: 17559253 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome and proteome of the highly neurotoxic venom of Gloydius intermedius. Yang ZM; Yang YE; Chen Y; Cao J; Zhang C; Liu LL; Wang ZZ; Wang XM; Wang YM; Tsai IH Toxicon; 2015 Dec; 107(Pt B):175-86. PubMed ID: 26278179 [TBL] [Abstract][Full Text] [Related]
15. Post-translational modification accounts for the presence of varied forms of nerve growth factor in Australian elapid snake venoms. Earl ST; Birrell GW; Wallis TP; St Pierre LD; Masci PP; de Jersey J; Gorman JJ; Lavin MF Proteomics; 2006 Dec; 6(24):6554-65. PubMed ID: 17109379 [TBL] [Abstract][Full Text] [Related]
16. Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. Liu CC; Lin CC; Hsiao YC; Wang PJ; Yu JS J Proteomics; 2018 Sep; 187():59-68. PubMed ID: 29929037 [TBL] [Abstract][Full Text] [Related]
18. New insights into the proteomic characterization of the coral snake Micrurus pyrrhocryptus venom. Olamendi-Portugal T; Batista CVF; Pedraza-Escalona M; Restano-Cassulini R; Zamudio FZ; Benard-Valle M; de Roodt AR; Possani LD Toxicon; 2018 Oct; 153():23-31. PubMed ID: 30153434 [TBL] [Abstract][Full Text] [Related]
19. Regional divergence of phospholipase A(2)-like protein cDNAs between New Guinean and Australian Pseudechis australis. Inagaki H; Yamauchi Y; Toriba M; Kubo T Toxicon; 2010 Sep; 56(4):637-9. PubMed ID: 20466013 [TBL] [Abstract][Full Text] [Related]
20. Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca. Lauridsen LP; Laustsen AH; Lomonte B; Gutiérrez JM J Proteomics; 2017 Jan; 150():98-108. PubMed ID: 27593527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]