These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 21133410)
1. Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110). Fang YH; Liu ZP J Am Chem Soc; 2010 Dec; 132(51):18214-22. PubMed ID: 21133410 [TBL] [Abstract][Full Text] [Related]
3. A first-principles study of molecular oxygen dissociation at an electrode surface: a comparison of potential variation and coadsorption effects. Wasileski SA; Janik MJ Phys Chem Chem Phys; 2008 Jul; 10(25):3613-27. PubMed ID: 18563222 [TBL] [Abstract][Full Text] [Related]
4. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. Li YF; Liu ZP; Liu L; Gao W J Am Chem Soc; 2010 Sep; 132(37):13008-15. PubMed ID: 20738085 [TBL] [Abstract][Full Text] [Related]
5. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. Trotochaud L; Ranney JK; Williams KN; Boettcher SW J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896 [TBL] [Abstract][Full Text] [Related]
6. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*. Yang X; Baik MH J Am Chem Soc; 2006 Jun; 128(23):7476-85. PubMed ID: 16756301 [TBL] [Abstract][Full Text] [Related]
7. Electrocatalytic oxygen evolution from water on a Mn(III-V) dimer model catalyst--a DFT perspective. Busch M; Ahlberg E; Panas I Phys Chem Chem Phys; 2011 Sep; 13(33):15069-76. PubMed ID: 21773630 [TBL] [Abstract][Full Text] [Related]
8. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. Gao M; Sheng W; Zhuang Z; Fang Q; Gu S; Jiang J; Yan Y J Am Chem Soc; 2014 May; 136(19):7077-84. PubMed ID: 24761994 [TBL] [Abstract][Full Text] [Related]
9. Searching for active binary rutile oxide catalyst for water splitting from first principles. Chen D; Fang YH; Liu ZP Phys Chem Chem Phys; 2012 Dec; 14(48):16612-7. PubMed ID: 22941355 [TBL] [Abstract][Full Text] [Related]
10. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Su HY; Gorlin Y; Man IC; Calle-Vallejo F; Nørskov JK; Jaramillo TF; Rossmeisl J Phys Chem Chem Phys; 2012 Oct; 14(40):14010-22. PubMed ID: 22990481 [TBL] [Abstract][Full Text] [Related]
11. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates. Nakka L; Molinari JE; Wachs IE J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071 [TBL] [Abstract][Full Text] [Related]
12. Structural, physicochemical, and reactivity properties of an all-inorganic, highly active tetraruthenium homogeneous catalyst for water oxidation. Geletii YV; Besson C; Hou Y; Yin Q; Musaev DG; Quiñonero D; Cao R; Hardcastle KI; Proust A; Kögerler P; Hill CL J Am Chem Soc; 2009 Dec; 131(47):17360-70. PubMed ID: 19894721 [TBL] [Abstract][Full Text] [Related]
13. The Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO(2) (110) Surface. Ping Y; Nielsen RJ; Goddard WA J Am Chem Soc; 2017 Jan; 139(1):149-155. PubMed ID: 27936679 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of electro-oxidation of carbon monoxide on stepped platinum electrodes in alkaline media: a chronoamperometric and kinetic modeling study. García G; Koper MT Phys Chem Chem Phys; 2009 Dec; 11(48):11437-46. PubMed ID: 20024414 [TBL] [Abstract][Full Text] [Related]
15. Kinetics and mechanisms of the oxidation of iodide and bromide in aqueous solutions by a trans-dioxoruthenium(VI) complex. Lam WW; Man WL; Wang YN; Lau TC Inorg Chem; 2008 Aug; 47(15):6771-8. PubMed ID: 18597422 [TBL] [Abstract][Full Text] [Related]
16. Insights into electrocatalysis. Anderson AB Phys Chem Chem Phys; 2012 Jan; 14(4):1330-8. PubMed ID: 22159903 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen-doped graphene supported CoSe₂ nanobelt composite catalyst for efficient water oxidation. Gao MR; Cao X; Gao Q; Xu YF; Zheng YR; Jiang J; Yu SH ACS Nano; 2014 Apr; 8(4):3970-8. PubMed ID: 24649855 [TBL] [Abstract][Full Text] [Related]
18. Effect of doping β-NiOOH with Co on the catalytic oxidation of water: DFT+U calculations. Costanzo F Phys Chem Chem Phys; 2016 Mar; 18(10):7490-501. PubMed ID: 26902752 [TBL] [Abstract][Full Text] [Related]
19. Electrocatalytic oxygen reduction kinetics on Fe-center of nitrogen-doped graphene. Sun J; Fang YH; Liu ZP Phys Chem Chem Phys; 2014 Jul; 16(27):13733-40. PubMed ID: 24752409 [TBL] [Abstract][Full Text] [Related]
20. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation. Lhermitte CR; Bartlett BM Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]