BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 21133414)

  • 1. Reducing the background fluorescence in mice receiving fluorophore/inhibitor DNA duplexes.
    Liang M; Liu X; Liu G; Dou S; Cheng D; Liu Y; Rusckowski M; Hnatowich DJ
    Mol Pharm; 2011 Feb; 8(1):126-32. PubMed ID: 21133414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical antisense imaging of tumor with fluorescent DNA duplexes.
    Liu X; Wang Y; Nakamura K; Liu G; Dou S; Kubo A; Rusckowski M; Hnatowich DJ
    Bioconjug Chem; 2007; 18(6):1905-11. PubMed ID: 17939728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of several linear fluorophore- and quencher-conjugated oligomer duplexes for stability, fluorescence quenching, and kinetics in vitro and in vivo in mice.
    Zhang S; Liu G; Liu X; Yin D; Dou S; He J; Rusckowski M; Hnatowich DJ
    Bioconjug Chem; 2007; 18(4):1170-5. PubMed ID: 17511492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of antisense tumor targeting in mice.
    Nakamura K; Fan C; Liu G; Gupta S; He J; Dou S; Kubo A; Rusckowski M; Hnatowich DJ
    Bioconjug Chem; 2004; 15(6):1475-80. PubMed ID: 15546217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical antisense tumor targeting in vivo with an improved fluorescent DNA duplex probe.
    Liang M; Liu X; Cheng D; Nakamura K; Wang Y; Dou S; Liu G; Rusckowski M; Hnatowich DJ
    Bioconjug Chem; 2009 Jun; 20(6):1223-7. PubMed ID: 19489604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A convenient thiazole orange fluorescence assay for the evaluation of DNA duplex hybridization stability.
    Liang M; Liu X; Nakamura K; Chen X; Cheng D; Liu G; Dou S; Wang Y; Rusckowski M; Hnatowich DJ
    Mol Imaging Biol; 2009; 11(6):439-45. PubMed ID: 19444399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical pretargeting of tumor with fluorescent MORF oligomers.
    He J; Rusckowski M; Wang Y; Dou S; Liu X; Zhang S; Liu G; Hnatowich DJ
    Mol Imaging Biol; 2007; 9(1):17-23. PubMed ID: 17171474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro/in vivo biorecognition of lectin-immobilized fluorescent nanospheres for human colorectal cancer cells.
    Sakuma S; Yano T; Masaoka Y; Kataoka M; Hiwatari K; Tachikawa H; Shoji Y; Kimura R; Ma H; Yang Z; Tang L; Hoffman RM; Yamashita S
    J Control Release; 2009 Feb; 134(1):2-10. PubMed ID: 19014984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activatable imaging probes with amplified fluorescent signals.
    Lee S; Park K; Kim K; Choi K; Kwon IC
    Chem Commun (Camb); 2008 Sep; (36):4250-60. PubMed ID: 18802536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence specific fluorescence detection of double strand DNA.
    Rucker VC; Foister S; Melander C; Dervan PB
    J Am Chem Soc; 2003 Feb; 125(5):1195-202. PubMed ID: 12553822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional optical detection based on pH dependent fluorescence lifetime.
    Gannot I; Ron I; Hekmat F; Chernomordik V; Gandjbakhche A
    Lasers Surg Med; 2004; 35(5):342-8. PubMed ID: 15611954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors.
    Xiong L; Chen Z; Tian Q; Cao T; Xu C; Li F
    Anal Chem; 2009 Nov; 81(21):8687-94. PubMed ID: 19817386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Preliminary screening and identification of a peptide that binds specifically to gastric cancers cells with high metastasis to peritoneum].
    Bai FH; Wang J; Zhao PT; Cao SS; Lei T; Li Y; Wu KC; Fan DM
    Zhonghua Yi Xue Za Zhi; 2006 Mar; 86(10):659-63. PubMed ID: 16681920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon lifetime imaging of fluorescent probes in intact blood vessels: a window to sub-cellular structural information and binding status.
    Douma K; Megens RT; Reitsma S; Prinzen L; Slaaf DW; Van Zandvoort MA
    Microsc Res Tech; 2007 May; 70(5):467-75. PubMed ID: 17393531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo fluorescence imaging of tumors using molecular aptamers generated by cell-SELEX.
    Shi H; Tang Z; Kim Y; Nie H; Huang YF; He X; Deng K; Wang K; Tan W
    Chem Asian J; 2010 Oct; 5(10):2209-13. PubMed ID: 20806314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent-labeled oligonucleotides that exhibit a measurable signal in the presence of complementary DNA.
    Yamana K; Ohashi Y; Nunota K; Aoki M; Nakano H; Sangen O
    Nucleic Acids Symp Ser; 1992; (27):135-6. PubMed ID: 1289792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of early colorectal cancer imaged with peanut agglutinin-immobilized fluorescent nanospheres having surface poly(N-vinylacetamide) chains.
    Sakuma S; Yano T; Masaoka Y; Kataoka M; Hiwatari K; Tachikawa H; Shoji Y; Kimura R; Ma H; Yang Z; Tang L; Hoffman RM; Yamashita S
    Eur J Pharm Biopharm; 2010 Mar; 74(3):451-60. PubMed ID: 20060903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands.
    Becker A; Hessenius C; Licha K; Ebert B; Sukowski U; Semmler W; Wiedenmann B; Grötzinger C
    Nat Biotechnol; 2001 Apr; 19(4):327-31. PubMed ID: 11283589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet.
    Kong DM; Ma YE; Wu J; Shen HX
    Chemistry; 2009; 15(4):901-9. PubMed ID: 19053101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.