These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21133836)

  • 1. Bioelectric effects of intense ultrashort pulses.
    Joshi RP; Schoenbach KH
    Crit Rev Biomed Eng; 2010; 38(3):255-304. PubMed ID: 21133836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular effects of nanosecond electrical pulses.
    Schoenbach KH; Joshi R; Kolb J; Buescher S; Beebe S
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():5447-50. PubMed ID: 17271579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling environment for numerical simulation of applied electric fields on biological cells.
    Suzuki DO; Ramos A; Marques JL
    Electromagn Biol Med; 2007; 26(3):239-50. PubMed ID: 17886010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of intense submicrosecond electrical pulses on cells.
    Deng J; Schoenbach KH; Buescher ES; Hair PS; Fox PM; Beebe SJ
    Biophys J; 2003 Apr; 84(4):2709-14. PubMed ID: 12668479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical modeling of in vivo plate electroporation thermal dose assessment.
    Becker SM; Kuznetsov AV
    J Biomech Eng; 2006 Feb; 128(1):76-84. PubMed ID: 16532620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.
    Hu Q; Viswanadham S; Joshi RP; Schoenbach KH; Beebe SJ; Blackmore PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031914. PubMed ID: 15903466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosecond pulsed electric field generators for the study of subcellular effects.
    Kolb JF; Kono S; Schoenbach KH
    Bioelectromagnetics; 2006 Apr; 27(3):172-87. PubMed ID: 16304697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling electroporation in a single cell.
    Krassowska W; Filev PD
    Biophys J; 2007 Jan; 92(2):404-17. PubMed ID: 17056739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoelectropulse-driven membrane perturbation and small molecule permeabilization.
    Vernier PT; Sun Y; Gundersen MA
    BMC Cell Biol; 2006 Oct; 7():37. PubMed ID: 17052354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF).
    Pakhomov AG; Kolb JF; White JA; Joshi RP; Xiao S; Schoenbach KH
    Bioelectromagnetics; 2007 Dec; 28(8):655-63. PubMed ID: 17654532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses.
    Ibey BL; Ullery JC; Pakhomova ON; Roth CC; Semenov I; Beier HT; Tarango M; Xiao S; Schoenbach KH; Pakhomov AG
    Biochem Biophys Res Commun; 2014 Jan; 443(2):568-73. PubMed ID: 24332942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular electroporation site distributions: modeling examples for nsPEF and IRE pulse waveforms.
    Gowrishankar TR; Esser AT; Smith KC; Son RS; Weaver JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():732-5. PubMed ID: 22254414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
    Vasilkoski Z; Esser AT; Gowrishankar TR; Weaver JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021904. PubMed ID: 17025469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on time-frequency characteristics of cellular transmenbrane potentials based on equivalent circuit model.
    Yao C; Hu X; Li C; Mi Y; Sun C
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1032-5. PubMed ID: 19162838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leukemic cell intracellular responses to nanosecond electric fields.
    Chen N; Schoenbach KH; Kolb JF; James Swanson R; Garner AL; Yang J; Joshi RP; Beebe SJ
    Biochem Biophys Res Commun; 2004 Apr; 317(2):421-7. PubMed ID: 15063775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High electrical field effects on cell membranes.
    Pliquett U; Joshi RP; Sridhara V; Schoenbach KH
    Bioelectrochemistry; 2007 May; 70(2):275-82. PubMed ID: 17123870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple nanosecond electric pulses increase the number but not the size of long-lived nanopores in the cell membrane.
    Pakhomov AG; Gianulis E; Vernier PT; Semenov I; Xiao S; Pakhomova ON
    Biochim Biophys Acta; 2015 Apr; 1848(4):958-66. PubMed ID: 25585279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning.
    Neal RE; Garcia PA; Robertson JL; Davalos RV
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1076-85. PubMed ID: 22231669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma membrane voltage changes during nanosecond pulsed electric field exposure.
    Frey W; White JA; Price RO; Blackmore PF; Joshi RP; Nuccitelli R; Beebe SJ; Schoenbach KH; Kolb JF
    Biophys J; 2006 May; 90(10):3608-15. PubMed ID: 16513782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of electrostimulation and electroporation by high repetition rate bursts of nanosecond stimuli.
    Sözer EB; Pakhomov AG; Semenov I; Casciola M; Kim V; Vernier PT; Zemlin CW
    Bioelectrochemistry; 2021 Aug; 140():107811. PubMed ID: 33862549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.