These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21134381)

  • 1. Dynamic conformations of the CD38-mediated NAD cyclization captured in a single crystal.
    Zhang H; Graeff R; Chen Z; Zhang L; Zhang L; Lee H; Hao Q
    J Mol Biol; 2011 Jan; 405(4):1070-8. PubMed ID: 21134381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the mechanism of bovine CD38/NAD+glycohydrolase from the X-ray structures of its Michaelis complex and covalently-trapped intermediates.
    Egea PF; Muller-Steffner H; Kuhn I; Cakir-Kiefer C; Oppenheimer NJ; Stroud RM; Kellenberger E; Schuber F
    PLoS One; 2012; 7(4):e34918. PubMed ID: 22529956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of cyclizing NAD to cyclic ADP-ribose by ADP-ribosyl cyclase and CD38.
    Graeff R; Liu Q; Kriksunov IA; Kotaka M; Oppenheimer N; Hao Q; Lee HC
    J Biol Chem; 2009 Oct; 284(40):27629-36. PubMed ID: 19640843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single residue at the active site of CD38 determines its NAD cyclizing and hydrolyzing activities.
    Graeff R; Munshi C; Aarhus R; Johns M; Lee HC
    J Biol Chem; 2001 Apr; 276(15):12169-73. PubMed ID: 11278881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for formation and hydrolysis of the calcium messenger cyclic ADP-ribose by human CD38.
    Liu Q; Kriksunov IA; Graeff R; Lee HC; Hao Q
    J Biol Chem; 2007 Feb; 282(8):5853-61. PubMed ID: 17182614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the enzymatic active site of CD38 by site-directed mutagenesis.
    Munshi C; Aarhus R; Graeff R; Walseth TF; Levitt D; Lee HC
    J Biol Chem; 2000 Jul; 275(28):21566-71. PubMed ID: 10781610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the mechanistic understanding of human CD38-controlled multiple catalysis.
    Liu Q; Kriksunov IA; Graeff R; Munshi C; Lee HC; Hao Q
    J Biol Chem; 2006 Oct; 281(43):32861-9. PubMed ID: 16951430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the active site of ADP-ribosyl cyclase.
    Munshi C; Thiel DJ; Mathews II; Aarhus R; Walseth TF; Lee HC
    J Biol Chem; 1999 Oct; 274(43):30770-7. PubMed ID: 10521467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAD binding by human CD38 analyzed by Trp189 fluorescence.
    Wolters V; Rosche A; Bauche A; Kulow F; Harneit A; Fliegert R; Guse AH
    Biochim Biophys Acta Mol Cell Res; 2019 Jul; 1866(7):1189-1196. PubMed ID: 30472140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for enzymatic evolution from a dedicated ADP-ribosyl cyclase to a multifunctional NAD hydrolase.
    Liu Q; Graeff R; Kriksunov IA; Jiang H; Zhang B; Oppenheimer N; Lin H; Potter BV; Lee HC; Hao Q
    J Biol Chem; 2009 Oct; 284(40):27637-45. PubMed ID: 19640846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities.
    Yamamoto-Katayama S; Ariyoshi M; Ishihara K; Hirano T; Jingami H; Morikawa K
    J Mol Biol; 2002 Feb; 316(3):711-23. PubMed ID: 11866528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries.
    Sauve AA; Munshi C; Lee HC; Schramm VL
    Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of ADP-ribosylation sites of CD38 mutants by precursor ion scanning mass spectrometry.
    Jiang H; Sherwood R; Zhang S; Zhu X; Liu Q; Graeff R; Kriksunov IA; Lee HC; Hao Q; Lin H
    Anal Biochem; 2013 Feb; 433(2):218-26. PubMed ID: 23123429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities.
    Graeff R; Liu Q; Kriksunov IA; Hao Q; Lee HC
    J Biol Chem; 2006 Sep; 281(39):28951-7. PubMed ID: 16861223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38.
    Howard M; Grimaldi JC; Bazan JF; Lund FE; Santos-Argumedo L; Parkhouse RM; Walseth TF; Lee HC
    Science; 1993 Nov; 262(5136):1056-9. PubMed ID: 8235624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Schistosoma mansoni NAD(+) catabolizing enzyme: identification of key residues in catalysis.
    Kuhn I; Kellenberger E; Schuber F; Muller-Steffner H
    Biochim Biophys Acta; 2013 Dec; 1834(12):2520-7. PubMed ID: 24035885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts.
    Franco L; Zocchi E; Usai C; Guida L; Bruzzone S; Costa A; De Flora A
    J Biol Chem; 2001 Jun; 276(24):21642-8. PubMed ID: 11274199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic adenosine 5'-diphosphate ribose analogs without a "southern" ribose inhibit ADP-ribosyl cyclase-hydrolase CD38.
    Swarbrick JM; Graeff R; Zhang H; Thomas MP; Hao Q; Potter BV
    J Med Chem; 2014 Oct; 57(20):8517-29. PubMed ID: 25226087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural studies of intermediates along the cyclization pathway of Aplysia ADP-ribosyl cyclase.
    Kotaka M; Graeff R; Chen Z; Zhang LH; Lee HC; Hao Q
    J Mol Biol; 2012 Jan; 415(3):514-26. PubMed ID: 22138343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porcine CD38 exhibits prominent secondary NAD(+) cyclase activity.
    Ting KY; Leung CF; Graeff RM; Lee HC; Hao Q; Kotaka M
    Protein Sci; 2016 Mar; 25(3):650-61. PubMed ID: 26660500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.