BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21134382)

  • 1. Phosphorylation-mediated conformational changes in the mouse neurofilament architecture: insight from a neurofilament brush model.
    Stevenson W; Chang R; Gebremichael Y
    J Mol Biol; 2011 Jan; 405(4):1101-18. PubMed ID: 21134382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture.
    Chang R; Kwak Y; Gebremichael Y
    J Mol Biol; 2009 Aug; 391(3):648-60. PubMed ID: 19559031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational dynamics of neurofilament side-arms.
    Stevens MJ; Hoh JH
    J Phys Chem B; 2010 Jul; 114(27):8879-86. PubMed ID: 20557103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational properties of interacting neurofilaments: Monte Carlo simulations of cylindrically grafted apposing neurofilament brushes.
    Jayanthi L; Stevenson W; Kwak Y; Chang R; Gebremichael Y
    J Biol Phys; 2013 Jun; 39(3):343-62. PubMed ID: 23860913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-consistent field analysis of the neurofilament brush with amino-acid resolution.
    Zhulina EB; Leermakers FA
    Biophys J; 2007 Sep; 93(5):1421-30. PubMed ID: 17513356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo.
    Yuan A; Nixon RA; Rao MV
    Neurosci Lett; 2006 Jan; 393(2-3):264-8. PubMed ID: 16266786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between planar grafted neurofilament side-arms.
    Stevens MJ; Hoh JH
    J Phys Chem B; 2011 Jun; 115(23):7541-9. PubMed ID: 21598932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures and interactions in 'bottlebrush' neurofilaments: the role of charged disordered proteins in forming hydrogel networks.
    Beck R; Deek J; Safinya CR
    Biochem Soc Trans; 2012 Oct; 40(5):1027-31. PubMed ID: 22988859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitogen-activated protein kinases (Erk1,2) phosphorylate Lys-Ser-Pro (KSP) repeats in neurofilament proteins NF-H and NF-M.
    Veeranna ; Amin ND; Ahn NG; Jaffe H; Winters CA; Grant P; Pant HC
    J Neurosci; 1998 Jun; 18(11):4008-21. PubMed ID: 9592082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of mammalian high-molecular-weight neurofilament subunit phosphorylation in cultured rat sympathetic neurons.
    Clark EA; Lee VM
    J Neurosci Res; 1991 Sep; 30(1):116-23. PubMed ID: 1795396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurofilament stoichiometry simulations during neurodegeneration suggest a remarkable self-sufficient and stable in vivo protein structure.
    Kim S; Chang R; Teunissen C; Gebremichael Y; Petzold A
    J Neurol Sci; 2011 Aug; 307(1-2):132-8. PubMed ID: 21601889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation.
    Lee J; Kim S; Chang R; Jayanthi L; Gebremichael Y
    J Chem Phys; 2013 Jan; 138(1):015103. PubMed ID: 23298063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glutamate-rich region of the larger lamprey neurofilament sidearm is essential for proper neurofilament architecture.
    Lee S; Chu B; Yao J; Shea TB; Hall GF
    Brain Res; 2008 Sep; 1231():1-5. PubMed ID: 18675794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry.
    Trimpin S; Mixon AE; Stapels MD; Kim MY; Spencer PS; Deinzer ML
    Biochemistry; 2004 Feb; 43(7):2091-105. PubMed ID: 14967049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allelic variants of the canine heavy neurofilament (NFH) subunit and extensive phosphorylation in dogs with motor neuron disease.
    Green SL; Westendorf JM; Jaffe H; Pant HC; Cork LC; Ostrander EA; Vignaux F; Ferrell JE
    J Comp Pathol; 2005 Jan; 132(1):33-50. PubMed ID: 15629478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses.
    Shea TB; Lee S
    Cytoskeleton (Hoboken); 2011 Nov; 68(11):589-95. PubMed ID: 21990272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurofilaments in health and disease.
    Gotow T
    Med Electron Microsc; 2000; 33(4):173-99. PubMed ID: 11810476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation of the neurofilament medium KSP repeat sub-domain across mammalian species: implications for altering axonal structure.
    Barry DM; Carpenter C; Yager C; Golik B; Barry KJ; Shen H; Mikse O; Eggert LS; Schulz DJ; Garcia ML
    J Exp Biol; 2010 Jan; 213(1):128-36. PubMed ID: 20008369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered ionic conductances in axons of transgenic mouse expressing the human neurofilament heavy gene: A mouse model of amyotrophic lateral sclerosis.
    Kriz J; Meier J; Julien JP; Padjen AL
    Exp Neurol; 2000 Jun; 163(2):414-21. PubMed ID: 10833316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the phosphorylation sites of human high molecular weight neurofilament protein by electrospray ionization tandem mass spectrometry and database searching.
    Jaffe H; Veeranna ; Shetty KT; Pant HC
    Biochemistry; 1998 Mar; 37(11):3931-40. PubMed ID: 9521714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.