These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21134896)

  • 1. MSPocket: an orientation-independent algorithm for the detection of ligand binding pockets.
    Zhu H; Pisabarro MT
    Bioinformatics; 2011 Feb; 27(3):351-8. PubMed ID: 21134896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation.
    Huang B; Schroeder M
    BMC Struct Biol; 2006 Sep; 6():19. PubMed ID: 16995956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere.
    Yu J; Zhou Y; Tanaka I; Yao M
    Bioinformatics; 2010 Jan; 26(1):46-52. PubMed ID: 19846440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of multiscale pockets on protein surfaces using mathematical morphology.
    Kawabata T
    Proteins; 2010 Apr; 78(5):1195-211. PubMed ID: 19938154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets.
    Ashford P; Moss DS; Alex A; Yeap SK; Povia A; Nobeli I; Williams MA
    BMC Bioinformatics; 2012 Mar; 13():39. PubMed ID: 22417279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. APoc: large-scale identification of similar protein pockets.
    Gao M; Skolnick J
    Bioinformatics; 2013 Mar; 29(5):597-604. PubMed ID: 23335017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multilayer dynamic perturbation analysis method for predicting ligand-protein interactions.
    Gu L; Li B; Ming D
    BMC Bioinformatics; 2022 Nov; 23(1):456. PubMed ID: 36324073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.
    Liang J; Edelsbrunner H; Woodward C
    Protein Sci; 1998 Sep; 7(9):1884-97. PubMed ID: 9761470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction.
    Zhang Z; Li Y; Lin B; Schroeder M; Huang B
    Bioinformatics; 2011 Aug; 27(15):2083-8. PubMed ID: 21636590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction.
    Pires DE; de Melo-Minardi RC; da Silveira CH; Campos FF; Meira W
    Bioinformatics; 2013 Apr; 29(7):855-61. PubMed ID: 23396119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive identification of "druggable" protein ligand binding sites.
    An J; Totrov M; Abagyan R
    Genome Inform; 2004; 15(2):31-41. PubMed ID: 15706489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach.
    Guo Z; Li B; Cheng LT; Zhou S; McCammon JA; Che J
    J Chem Theory Comput; 2015 Feb; 11(2):753-65. PubMed ID: 25941465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph-Based Clustering of Predicted Ligand-Binding Pockets on Protein Surfaces.
    Degac J; Winter U; Helms V
    J Chem Inf Model; 2015 Sep; 55(9):1944-52. PubMed ID: 26325445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pocketome via comprehensive identification and classification of ligand binding envelopes.
    An J; Totrov M; Abagyan R
    Mol Cell Proteomics; 2005 Jun; 4(6):752-61. PubMed ID: 15757999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction, quantification and visualization of protein pockets.
    Zhang X; Bajaj C
    Comput Syst Bioinformatics Conf; 2007; 6():275-86. PubMed ID: 17951831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-binding site prediction using ligand-interacting and binding site-enriched protein triangles.
    Xie ZR; Hwang MJ
    Bioinformatics; 2012 Jun; 28(12):1579-85. PubMed ID: 22495747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PocketDepth: a new depth based algorithm for identification of ligand binding sites in proteins.
    Kalidas Y; Chandra N
    J Struct Biol; 2008 Jan; 161(1):31-42. PubMed ID: 17949996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network.
    Pu L; Govindaraj RG; Lemoine JM; Wu HC; Brylinski M
    PLoS Comput Biol; 2019 Feb; 15(2):e1006718. PubMed ID: 30716081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate detection of protein:ligand binding sites using molecular dynamics simulations.
    Bhinge A; Chakrabarti P; Uthanumallian K; Bajaj K; Chakraborty K; Varadarajan R
    Structure; 2004 Nov; 12(11):1989-99. PubMed ID: 15530363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting protein-ligand binding sites based on an improved geometric algorithm.
    He J; Wei DQ; Wang JF; Chou KC
    Protein Pept Lett; 2011 Oct; 18(10):997-1001. PubMed ID: 21592081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.