These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2113568)

  • 41. Comparison of force and stiffness in normal and dystrophic mouse muscles.
    Gordon T; Stein RB
    Muscle Nerve; 1988 Aug; 11(8):819-27. PubMed ID: 3173407
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of endurance exercise on dystrophic mdx mice. I. Contractile and histochemical properties of intact muscles.
    Hayes A; Lynch GS; Williams DA
    Proc Biol Sci; 1993 Jul; 253(1336):19-25. PubMed ID: 8396774
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of chronic electrical stimulation at low frequency on the passive membrane properties of muscle fibers from dystrophic mice.
    Dangain J; Vrbová G
    Exp Neurol; 1983 Mar; 79(3):630-40. PubMed ID: 6825756
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Beneficial effects of voluntary wheel running on the properties of dystrophic mouse muscle.
    Hayes A; Williams DA
    J Appl Physiol (1985); 1996 Feb; 80(2):670-9. PubMed ID: 8929614
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intracellular activity of sodium in normal and dystrophic skeletal muscle from C57BL/6J mice.
    Ward KM; Wareham AC
    Exp Neurol; 1984 Mar; 83(3):629-33. PubMed ID: 6698162
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contractile properties of soleus muscle during development in normal and dystrophic mice.
    Taylor RG; Fowler WM; Mason DT
    Arch Phys Med Rehabil; 1974 Dec; 55(12):531-9. PubMed ID: 4429430
    [No Abstract]   [Full Text] [Related]  

  • 47. Energetics of isometric contraction in dystrophic fast and slow muscles.
    Nwoye LO; Goldspink G
    Muscle Nerve; 1982 Jan; 5(1):69-72. PubMed ID: 7057809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical activation in dystrophic C57BL mouse muscle.
    Dulhunty AF; Vaughan PC
    Neurosci Lett; 1980 May; 17(3):289-93. PubMed ID: 7052474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Examining potential drug therapies for muscular dystrophy utilising the dy/dy mouse: I. Clenbuterol.
    Hayes A; Williams DA
    J Neurol Sci; 1998 May; 157(2):122-8. PubMed ID: 9619633
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Contractile function and low-intensity exercise effects of old dystrophic (mdx) mice.
    Hayes A; Williams DA
    Am J Physiol; 1998 Apr; 274(4):C1138-44. PubMed ID: 9575811
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physiological properties of skinned fibres from normal and dystrophic (Duchenne) human muscle activated by Ca2+ and Sr2+.
    Fink RH; Stephenson DG; Williams DA
    J Physiol; 1990 Jan; 420():337-53. PubMed ID: 2324989
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exercise effect on contractile properties of skeletal muscle in mouse muscular dystrophy.
    Taylor RG; Fowler WM; Doerr L
    Arch Phys Med Rehabil; 1976 Apr; 57(4):174-80. PubMed ID: 1267593
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A developmental change in the content of parvalbumin in normal and dystrophic mouse (mdx) muscle.
    Sano M; Yokota T; Endo T; Tsukagoshi H
    J Neurol Sci; 1990 Jul; 97(2-3):261-72. PubMed ID: 2119423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Abnormal distribution of fiber types in the slow-twitch soleus muscle of the C57BL/6J dy2J/dy2J dystrophic mouse during postnatal development.
    Ovalle WK; Bressler BH; Jasch LG; Slonecker CE
    Am J Anat; 1983 Nov; 168(3):291-304. PubMed ID: 6650441
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ontogenetic aspects of changes in muscular potentials at medial gastrocnemius muscles of dystrophic mice due to prolonged stimulation.
    Watanabe K; Uramoto I; Totsuka T
    J Neurol Sci; 1984 Oct; 66(1):59-66. PubMed ID: 6520613
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points.
    Capogrosso RF; Mantuano P; Cozzoli A; Sanarica F; Massari AM; Conte E; Fonzino A; Giustino A; Rolland JF; Quaranta A; De Bellis M; Camerino GM; Grange RW; De Luca A
    J Appl Physiol (1985); 2017 Apr; 122(4):828-843. PubMed ID: 28057817
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ca2+-dependent slow action potentials in normal and dystrophic mouse skeletal muscle.
    Kerr LM; Sperelakis N
    Am J Physiol; 1983 Nov; 245(5 Pt 1):C415-22. PubMed ID: 6605692
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diaphragm tension reduced in dystrophic mice by an oxidant, hypochlorous acid.
    Lafoux A; Divet A; Gervier P; Huchet-Cadiou C
    Can J Physiol Pharmacol; 2010 Feb; 88(2):130-40. PubMed ID: 20237587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Branched fibres in old dystrophic mdx muscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+ transients and a breakdown of Ca2+ homeostasis during fatigue.
    Head SI
    Exp Physiol; 2010 May; 95(5):641-56. PubMed ID: 20139167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [3H]Ouabain binding in normal and dystrophic mouse skeletal muscles and the effect of age.
    Abdel-Aziz MI; Manning W; Ward KM; Wareham AC
    J Neurol Sci; 1985 Aug; 70(1):47-53. PubMed ID: 2995594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.