These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 21135948)
1. Simple model for the growth behaviour of mixed lecithin-bile salt micelles. Madenci D; Salonen A; Schurtenberger P; Pedersen JS; Egelhaaf SU Phys Chem Chem Phys; 2011 Feb; 13(8):3171-8. PubMed ID: 21135948 [TBL] [Abstract][Full Text] [Related]
2. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile. Cohen DE; Thurston GM; Chamberlin RA; Benedek GB; Carey MC Biochemistry; 1998 Oct; 37(42):14798-814. PubMed ID: 9778354 [TBL] [Abstract][Full Text] [Related]
3. Quasielastic light scattering studies of aqueous biliary lipid systems and native bile. Mazer NA Hepatology; 1990 Sep; 12(3 Pt 2):39S-44S. PubMed ID: 2210655 [TBL] [Abstract][Full Text] [Related]
4. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water. Cheng CY; Oh H; Wang TY; Raghavan SR; Tung SH Langmuir; 2014 Sep; 30(34):10221-30. PubMed ID: 25121460 [TBL] [Abstract][Full Text] [Related]
5. A new reverse wormlike micellar system: mixtures of bile salt and lecithin in organic liquids. Tung SH; Huang YE; Raghavan SR J Am Chem Soc; 2006 May; 128(17):5751-6. PubMed ID: 16637643 [TBL] [Abstract][Full Text] [Related]
6. Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization. Njauw CW; Cheng CY; Ivanov VA; Khokhlov AR; Tung SH Langmuir; 2013 Mar; 29(12):3879-88. PubMed ID: 23441904 [TBL] [Abstract][Full Text] [Related]
7. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. Mazer NA; Benedek GB; Carey MC Biochemistry; 1980 Feb; 19(4):601-15. PubMed ID: 7356951 [TBL] [Abstract][Full Text] [Related]
8. Liposome formation from bile salt-lipid micelles in the digestion and drug delivery model FaSSIF(mod) estimated by combined time-resolved neutron and dynamic light scattering. Nawroth T; Buch P; Buch K; Langguth P; Schweins R Mol Pharm; 2011 Dec; 8(6):2162-72. PubMed ID: 21988605 [TBL] [Abstract][Full Text] [Related]
9. Formation of mixed micelles and vesicles of human apolipoproteins A-I and A-II with synthetic and natural lecithins and the bile salt sodium taurocholate: quasi-elastic light scattering studies. Donovan JM; Benedek GB; Carey MC Biochemistry; 1987 Dec; 26(25):8215-33. PubMed ID: 3126801 [TBL] [Abstract][Full Text] [Related]
10. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts. Narain PK; DeMaria EJ; Heuman DM J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899 [TBL] [Abstract][Full Text] [Related]
11. Structural characterization of the micelle-vesicle transition in lecithin-bile salt solutions. Long MA; Kaler EW; Lee SP Biophys J; 1994 Oct; 67(4):1733-42. PubMed ID: 7819505 [TBL] [Abstract][Full Text] [Related]
12. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile. Donovan JM; Timofeyeva N; Carey MC J Lipid Res; 1991 Sep; 32(9):1501-12. PubMed ID: 1753218 [TBL] [Abstract][Full Text] [Related]
13. Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine. Rupp C; Steckel H; Müller BW Int J Pharm; 2010 Aug; 395(1-2):272-80. PubMed ID: 20580793 [TBL] [Abstract][Full Text] [Related]
14. Separation and quantitation of cholesterol "carriers" in bile. Donovan JM; Carey MC Hepatology; 1990 Sep; 12(3 Pt 2):94S-104S; discussion 104S-105S. PubMed ID: 2210665 [TBL] [Abstract][Full Text] [Related]
15. 1-Naphthol as a sensitive fluorescent molecular probe for monitoring the interaction of submicellar concentration of bile salt with a bilayer membrane of DPPC, a lung surfactant. Mohapatra M; Mishra AK J Phys Chem B; 2010 Nov; 114(46):14934-40. PubMed ID: 21038898 [TBL] [Abstract][Full Text] [Related]
16. Studies on the microstructure of bile salt aggregates in aqueous n-alkanol solutions by Small Angle Neutron Scattering. Santhanalakshmi J; Shanthalakshmi G; Aswal VK; Goyal PS Indian J Biochem Biophys; 2002 Jun; 39(3):170-8. PubMed ID: 22905387 [TBL] [Abstract][Full Text] [Related]
17. Sizing of lecithin-bile salt mixed micelles by size-exclusion high-performance liquid chromatography. Nichols JW; Ozarowski J Biochemistry; 1990 May; 29(19):4600-6. PubMed ID: 2372545 [TBL] [Abstract][Full Text] [Related]
18. Separation of bile vesicles and micelles by gel filtration chromatography: the importance of the intermicellar bile salt concentration. Stone BG; Larsen LJ; Knoll DA; Bloomfield VA; Duane WC J Lab Clin Med; 1992 May; 119(5):557-65. PubMed ID: 1583413 [TBL] [Abstract][Full Text] [Related]
19. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles. Luk AS; Kaler EW; Lee SP Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403 [TBL] [Abstract][Full Text] [Related]
20. Stability of mixed micellar systems made by solubilizing phosphatidylcholine-cholesterol vesicles by bile salts. Lichtenberg D; Ragimova S; Bor A; Almog S; Vinkler C; Peled Y; Halpern Z Hepatology; 1990 Sep; 12(3 Pt 2):149S-153S; discussion 153S-154S. PubMed ID: 2210643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]