BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 21135965)

  • 1. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects.
    Sung KE; Yang N; Pehlke C; Keely PJ; Eliceiri KW; Friedl A; Beebe DJ
    Integr Biol (Camb); 2011 Apr; 3(4):439-50. PubMed ID: 21135965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human 21T breast epithelial cell lines mimic breast cancer progression in vivo and in vitro and show stage-specific gene expression patterns.
    Souter LH; Andrews JD; Zhang G; Cook AC; Postenka CO; Al-Katib W; Leong HS; Rodenhiser DI; Chambers AF; Tuck AB
    Lab Invest; 2010 Aug; 90(8):1247-58. PubMed ID: 20458274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo.
    Khurana A; McKean H; Kim H; Kim SH; mcguire J; Roberts LR; Goetz MP; Shridhar V
    Breast Cancer Res; 2012 Mar; 14(2):R43. PubMed ID: 22410125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ.
    Jedeszko C; Victor BC; Podgorski I; Sloane BF
    Cancer Res; 2009 Dec; 69(23):9148-55. PubMed ID: 19920187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Models for Studying Invasive Transitions of Ductal Carcinoma In Situ.
    Brock EJ; Ji K; Shah S; Mattingly RR; Sloane BF
    J Mammary Gland Biol Neoplasia; 2019 Mar; 24(1):1-15. PubMed ID: 30056557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure.
    Bischel LL; Beebe DJ; Sung KE
    BMC Cancer; 2015 Jan; 15():12. PubMed ID: 25605670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma
    Lo PK; Zhang Y; Yao Y; Wolfson B; Yu J; Han SY; Duru N; Zhou Q
    J Biol Chem; 2017 Jul; 292(27):11466-11484. PubMed ID: 28512126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organotypic microfluidic breast cancer model reveals starvation-induced spatial-temporal metabolic adaptations.
    Ayuso JM; Gillette A; Lugo-Cintrón K; Acevedo-Acevedo S; Gomez I; Morgan M; Heaster T; Wisinski KB; Palecek SP; Skala MC; Beebe DJ
    EBioMedicine; 2018 Nov; 37():144-157. PubMed ID: 30482722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MNK1/NODAL Signaling Promotes Invasive Progression of Breast Ductal Carcinoma
    Guo Q; Li VZ; Nichol JN; Huang F; Yang W; Preston SEJ; Talat Z; Lefrère H; Yu H; Zhang G; Basik M; Gonçalves C; Zhan Y; Plourde D; Su J; Torres J; Marques M; Habyan SA; Bijian K; Amant F; Witcher M; Behbod F; McCaffrey L; Alaoui-Jamali M; Giannakopoulos NV; Brackstone M; Postovit LM; Del Rincón SV; Miller WH
    Cancer Res; 2019 Apr; 79(7):1646-1657. PubMed ID: 30659022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAME models for 4D live-cell imaging of tumor: microenvironment interactions that impact malignant progression.
    Sameni M; Anbalagan A; Olive MB; Moin K; Mattingly RR; Sloane BF
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22371028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breast cancer subtype-specific interactions with the microenvironment dictate mechanisms of invasion.
    Dang TT; Prechtl AM; Pearson GW
    Cancer Res; 2011 Nov; 71(21):6857-66. PubMed ID: 21908556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast.
    Hu M; Peluffo G; Chen H; Gelman R; Schnitt S; Polyak K
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3372-7. PubMed ID: 19218449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of Her2/neu, steroid receptors (ER and PR), Ki67 and p53 in invasive mammary ductal carcinoma associated with ductal carcinoma In Situ (DCIS) Versus invasive breast cancer alone.
    Mylonas I; Makovitzky J; Jeschke U; Briese V; Friese K; Gerber B
    Anticancer Res; 2005; 25(3A):1719-23. PubMed ID: 16033090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Organotypic Mammary Duct Model Capturing Matrix Mechanics-Dependent Ductal Carcinoma
    Kulwatno J; Gong X; DeVaux R; Herschkowitz JI; Mills KL
    Tissue Eng Part A; 2021 Apr; 27(7-8):454-466. PubMed ID: 33397202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathomimetic avatars reveal divergent roles of microenvironment in invasive transition of ductal carcinoma in situ.
    Sameni M; Cavallo-Medved D; Franco OE; Chalasani A; Ji K; Aggarwal N; Anbalagan A; Chen X; Mattingly RR; Hayward SW; Sloane BF
    Breast Cancer Res; 2017 May; 19(1):56. PubMed ID: 28506312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Everolimus Inhibits the Progression of Ductal Carcinoma
    Chen G; Ding XF; Pressley K; Bouamar H; Wang B; Zheng G; Broome LE; Nazarullah A; Brenner AJ; Kaklamani V; Jatoi I; Sun LZ
    Clin Cancer Res; 2020 Mar; 26(6):1486-1496. PubMed ID: 31871301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of a 3D co-culture model to investigate the role of primary fibroblasts in ductal carcinoma in situ of the breast.
    Sourouni M; Opitz C; Radke I; Kiesel L; Tio J; Götte M; von Wahlde MK
    Cancer Rep (Hoboken); 2023 Apr; 6(4):e1771. PubMed ID: 36534078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TNFAIP3 is required for FGFR1 activation-promoted proliferation and tumorigenesis of premalignant DCIS.COM human mammary epithelial cells.
    Yang M; Yu X; Li X; Luo B; Yang W; Lin Y; Li D; Gan Z; Xu J; He T
    Breast Cancer Res; 2018 Aug; 20(1):97. PubMed ID: 30111373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion.
    Elsarraj HS; Hong Y; Valdez KE; Michaels W; Hook M; Smith WP; Chien J; Herschkowitz JI; Troester MA; Beck M; Inciardi M; Gatewood J; May L; Cusick T; McGinness M; Ricci L; Fan F; Tawfik O; Marks JR; Knapp JR; Yeh HW; Thomas P; Carrasco DR; Fields TA; Godwin AK; Behbod F
    Breast Cancer Res; 2015 Sep; 17():128. PubMed ID: 26384318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models.
    Sung KE; Su X; Berthier E; Pehlke C; Friedl A; Beebe DJ
    PLoS One; 2013; 8(10):e76373. PubMed ID: 24124550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.