These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21136278)

  • 1. Comparison of otoacoustic emissions within gecko subfamilies: morphological implications for auditory function in lizards.
    Bergevin C
    J Assoc Res Otolaryngol; 2011 Apr; 12(2):203-17. PubMed ID: 21136278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards.
    Bergevin C; Shera CA
    J Acoust Soc Am; 2010 Apr; 127(4):2398-409. PubMed ID: 20370023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tectorial membrane morphological variation: effects upon stimulus frequency otoacoustic emissions.
    Bergevin C; Velenovsky DS; Bonine KE
    Biophys J; 2010 Aug; 99(4):1064-72. PubMed ID: 20712989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous otoacoustic emissions in two gecko species, Gekko gecko and Eublepharis macularius.
    Manley GA; Gallo L; Koppl C
    J Acoust Soc Am; 1996 Mar; 99(3):1588-603. PubMed ID: 8819855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms.
    Bergevin C; Manley GA; Köppl C
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3362-7. PubMed ID: 25737537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What have lizard ears taught us about auditory physiology?
    Manley GA; Köppl C
    Hear Res; 2008 Apr; 238(1-2):3-11. PubMed ID: 17983712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous otoacoustic emissions in the bobtail lizard. I: General characteristics.
    Köppl C; Manley GA
    Hear Res; 1993 Dec; 71(1-2):157-69. PubMed ID: 8113134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous otoacoustic emissions in lizards: a comparison of the skink-like lizard families Cordylidae and Gerrhosauridae.
    Manley GA
    Hear Res; 2009 Sep; 255(1-2):58-66. PubMed ID: 19539017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko's cochlea.
    Gelfand M; Piro O; Magnasco MO; Hudspeth AJ
    PLoS One; 2010 Jun; 5(6):e11116. PubMed ID: 20559557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the characteristics of spontaneous otoacoustic emissions in lizards.
    Wit HP; Manley GA; van Dijk P
    Hear Res; 2020 Jan; 385():107840. PubMed ID: 31760263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifrequency forcing of a Hopf oscillator model of the inner ear.
    Montgomery KA
    Biophys J; 2008 Aug; 95(3):1075-9. PubMed ID: 18424492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient-Evoked Otoacoustic Emissions Reflect Audiometric Patterns of Age-Related Hearing Loss.
    Vaden KI; Matthews LJ; Dubno JR
    Trends Hear; 2018; 22():2331216518797848. PubMed ID: 30198420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms.
    Bergevin C; Freeman DM; Saunders JC; Shera CA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jul; 194(7):665-83. PubMed ID: 18500528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae.
    Manley GA
    Hear Res; 2006 Feb; 212(1-2):33-47. PubMed ID: 16307854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency clustering in spontaneous otoacoustic emissions from a lizard's ear.
    Vilfan A; Duke T
    Biophys J; 2008 Nov; 95(10):4622-30. PubMed ID: 18689448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Otoacoustic emissions--a step closer to understanding cochlear function].
    Komazec Z; Milosević D; Filipović D; Dankuc D
    Med Pregl; 2001; 54(11-12):539-42. PubMed ID: 11921687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distortion product otoacoustic emissions and tympanometric measurements in an adult population-based study.
    Uchida Y; Ando F; Nakata S; Ueda H; Nakashima T; Niino N; Shimokata H
    Auris Nasus Larynx; 2006 Dec; 33(4):397-401. PubMed ID: 16753276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech-in-noise perception ability can be related to auditory efferent pathway function: a comparative study in reading impaired and normal reading children.
    Akbari M; Panahi R; Valadbeigi A; Hamadi Nahrani M
    Braz J Otorhinolaryngol; 2020; 86(2):209-216. PubMed ID: 30772249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.