BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 2113674)

  • 1. Nocturnal illumination does not necessarily stimulate the photoperiodic response, despite mimicking the effects of constant light on the circadian system in the male Syrian hamster.
    Ferraro JS; Krum HN; Bartke A; Wassmer GT; Chandrashekar V; Michael SD; Sulzman FM
    Physiol Behav; 1990 Mar; 47(3):577-88. PubMed ID: 2113674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entrainment of Syrian hamsters to short photoperiod T-cycles does not reverse the inhibitory nature of feedback lighting on the photoperiodic response.
    Ferraro JS; Bartke A; Steger RW
    J Interdiscipl Cycle Res; 1991; 22(1):21-30. PubMed ID: 11537549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of feedback lighting on the circadian rhythm of locomotor activity and the reproductive maturation of the male Djungarian hamster (Phodopus sungorus).
    Ferraro JS
    J Interdiscipl Cycle Res; 1988; 19(1):29-47. PubMed ID: 11539080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nocturnal illumination maintains reproductive function and simulates the period-lengthening effect of constant light in the mature male Djungarian hamster (Phodopus sungorus).
    Ferraro JS
    J Interdiscipl Cycle Res; 1990; 21(1):1-16. PubMed ID: 11538043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gonadal regression despite light pulses coincident with locomotor activity in the Syrian hamster.
    Ferraro JS; McCormack CE
    Biol Reprod; 1985 Aug; 33(1):93-102. PubMed ID: 3904852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian and photoperiodic time measurement in male Syrian hamsters following lesions of the melatonin-binding sites of the paraventricular thalamus.
    Ebling FJ; Maywood ES; Humby T; Hastings MH
    J Biol Rhythms; 1992; 7(3):241-54. PubMed ID: 1330085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian and photoperiodic effects of brief light pulses in male Djungarian hamsters.
    Milette JJ; Turek FW
    Biol Reprod; 1986 Sep; 35(2):327-35. PubMed ID: 3094595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian rhythms in reproductive and thyroid hormones in gonadally regressed male hamsters exposed to natural autumn photoperiod and temperature conditions.
    Vaughan MK; Menendez-Pelaez A; Buzzell GR; Vaughan GM; Little JC; Reiter RJ
    Neuroendocrinology; 1994 Jul; 60(1):96-104. PubMed ID: 8090288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimum duration of light signals capable of producing the Aschoff effect.
    Ferraro JS; McCormack CE
    Physiol Behav; 1986; 38(1):139-44. PubMed ID: 3786494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoperiodic regulation of glutamatergic stimulation of secretion of luteinizing hormone in male Syrian hamsters.
    Hui Y; Hastings MH; Maywood ES; Ebling FJ
    J Reprod Fertil; 1992 Aug; 95(3):935-46. PubMed ID: 1357168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of photoperiodic history on the responses of gonadotrophins and prolactin to intermediate daylengths in the male Syrian hamster.
    Hastings MH; Walker AP; Powers JB; Hutchison J; Steel EA; Herbert J
    J Biol Rhythms; 1989; 4(3):335-50. PubMed ID: 2519598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoperiod history, melatonin, and reproductive responses of male Syrian hamsters.
    Karp JD; Dixon ME; Powers JB
    J Pineal Res; 1990; 8(2):137-52. PubMed ID: 2352114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of feedback lighting on the circadian drinking rhythm in the diurnal new world primate Saimiri sciureus.
    Ferraro JS; Sulzman FM
    Am J Primatol; 1988; 15(2):143-55. PubMed ID: 11539805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic exposure to a brief light signal stimulates neuroendocrine-gonadal activity in golden hamsters.
    Earnest DJ; Turek FW
    J Androl; 1984; 5(2):64-9. PubMed ID: 6425251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that the circadian system mediates photoperiodic nonresponsiveness in Siberian hamsters: the effect of running wheel access on photoperiodic responsiveness.
    Freeman DA; Goldman BD
    J Biol Rhythms; 1997 Apr; 12(2):100-9. PubMed ID: 9090564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in photoperiod alter the daily rhythms of pineal melatonin content and hypothalamic beta-endorphin content and the luteinizing hormone response to naloxone in the male Syrian hamster.
    Roberts AC; Martensz ND; Hastings MH; Herbert J
    Endocrinology; 1985 Jul; 117(1):141-8. PubMed ID: 3159563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of photoinhibition, photostimulation and prolactin on pituitary and hypothalamic nuclear androgen receptors in the male hamster.
    Prins GS; Bartke A; Steger RW
    Neuroendocrinology; 1990 Nov; 52(5):511-6. PubMed ID: 2126358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase resetting in duper hamsters: specificity to photic zeitgebers and circadian phase.
    Manoogian EN; Leise TL; Bittman EL
    J Biol Rhythms; 2015 Apr; 30(2):129-43. PubMed ID: 25633984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproductive responses to photoperiod persist in olfactory bulbectomized Siberian hamsters (Phodopus sungorus).
    Prendergast BJ; Pyter LM; Galang J; Kay LM
    Behav Brain Res; 2009 Mar; 198(1):159-64. PubMed ID: 19027041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.