BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 21137019)

  • 1. Proteomic studies on receptor for advanced glycation end product variants in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease.
    Ohlmeier S; Mazur W; Salmenkivi K; Myllärniemi M; Bergmann U; Kinnula VL
    Proteomics Clin Appl; 2010 Jan; 4(1):97-105. PubMed ID: 21137019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10).
    Raucci A; Cugusi S; Antonelli A; Barabino SM; Monti L; Bierhaus A; Reiss K; Saftig P; Bianchi ME
    FASEB J; 2008 Oct; 22(10):3716-27. PubMed ID: 18603587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of chronic hypoxia on RAGE and its soluble forms in lungs and plasma of mice.
    Gopal P; Gosker HR; Theije CC; Eurlings IM; Sell DR; Monnier VM; Reynaert NL
    Biochim Biophys Acta; 2015 May; 1852(5):992-1000. PubMed ID: 25703138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serum Level of Soluble Receptor for Advanced Glycation End Products Is Associated with A Disintegrin And Metalloproteinase 10 in Type 1 Diabetes.
    Lee AC; Lam JK; Shiu SW; Wong Y; Betteridge DJ; Tan KC
    PLoS One; 2015; 10(9):e0137330. PubMed ID: 26325204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced endogenous secretory RAGE in blood and bronchoalveolar lavage fluid is associated with poor prognosis in idiopathic pulmonary fibrosis.
    Yamaguchi K; Iwamoto H; Mazur W; Miura S; Sakamoto S; Horimasu Y; Masuda T; Miyamoto S; Nakashima T; Ohshimo S; Fujitaka K; Hamada H; Hattori N
    Respir Res; 2020 Jun; 21(1):145. PubMed ID: 32527263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease.
    Ferhani N; Letuve S; Kozhich A; Thibaudeau O; Grandsaigne M; Maret M; Dombret MC; Sims GP; Kolbeck R; Coyle AJ; Aubier M; Pretolani M
    Am J Respir Crit Care Med; 2010 May; 181(9):917-27. PubMed ID: 20133931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of lung apolipoprotein A-I in idiopathic pulmonary fibrosis: antiinflammatory and antifibrotic effect on experimental lung injury and fibrosis.
    Kim TH; Lee YH; Kim KH; Lee SH; Cha JY; Shin EK; Jung S; Jang AS; Park SW; Uh ST; Kim YH; Park JS; Sin HG; Youm W; Koh ES; Cho SY; Paik YK; Rhim TY; Park CS
    Am J Respir Crit Care Med; 2010 Sep; 182(5):633-42. PubMed ID: 20463180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced glycation end-products and receptor for advanced glycation end-products expression in patients with idiopathic pulmonary fibrosis and NSIP.
    Kyung SY; Byun KH; Yoon JY; Kim YJ; Lee SP; Park JW; Lee BH; Park JS; Jang AS; Park CS; Jeong SH
    Int J Clin Exp Pathol; 2014; 7(1):221-8. PubMed ID: 24427342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic significance of surfactant protein A, surfactant protein D, Clara cell protein 16, S100 protein, trefoil factor 3, and prostatic secretory protein 94 in idiopathic pulmonary fibrosis, sarcoidosis, and chronic pulmonary obstructive disease.
    Doubková M; Karpíšek M; Mazoch J; Skřičková J; Doubek M
    Sarcoidosis Vasc Diffuse Lung Dis; 2016 Oct; 33(3):224-234. PubMed ID: 27758987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases.
    Zhang L; Bukulin M; Kojro E; Roth A; Metz VV; Fahrenholz F; Nawroth PP; Bierhaus A; Postina R
    J Biol Chem; 2008 Dec; 283(51):35507-16. PubMed ID: 18952609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and levels of alpha-1-antitrypsin in the lung and plasma in smokers and chronic obstructive pulmonary disease.
    Linja-aho A; Mazur W; Toljamo T; Nieminen P; Ohlmeier S; Rönty M; Kinnula VL
    APMIS; 2013 Jan; 121(1):11-21. PubMed ID: 23030783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-regulated intramembrane proteolysis of the RAGE receptor.
    Galichet A; Weibel M; Heizmann CW
    Biochem Biophys Res Commun; 2008 May; 370(1):1-5. PubMed ID: 18355449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EGCG-rich green tea extract stimulates sRAGE secretion to inhibit S100A12-RAGE axis through ADAM10-mediated ectodomain shedding of extracellular RAGE in type 2 diabetes.
    Huang SM; Chang YH; Chao YC; Lin JA; Wu CH; Lai CY; Chan KC; Tseng ST; Yen GC
    Mol Nutr Food Res; 2013 Dec; 57(12):2264-8. PubMed ID: 23901023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of bronchoalveolar lavage fluid samples obtained from West Highland White Terriers with idiopathic pulmonary fibrosis, dogs with chronic bronchitis, and healthy dogs.
    Lilja-Maula LI; Palviainen MJ; Heikkilä HP; Raekallio MR; Rajamäki MM
    Am J Vet Res; 2013 Jan; 74(1):148-54. PubMed ID: 23270360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.
    Åhrman E; Hallgren O; Malmström L; Hedström U; Malmström A; Bjermer L; Zhou XH; Westergren-Thorsson G; Malmström J
    J Proteomics; 2018 Oct; 189():23-33. PubMed ID: 29501846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics of human lung tissue identifies surfactant protein A as a marker of chronic obstructive pulmonary disease.
    Ohlmeier S; Vuolanto M; Toljamo T; Vuopala K; Salmenkivi K; Myllärniemi M; Kinnula VL
    J Proteome Res; 2008 Dec; 7(12):5125-32. PubMed ID: 19367700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased RAGE expression in peripheral blood mononuclear cells of patients with rheumatoid arthritis.
    Drinda S; Franke S; Eidner T; Schmidt C; Rüster C; Bondeva T; Hein G; Wolf G
    Clin Exp Rheumatol; 2009; 27(3):483-90. PubMed ID: 19604442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RAGE processing in chronic airway conditions: involvement of Staphylococcus aureus and ECP.
    Van Crombruggen K; Holtappels G; De Ruyck N; Derycke L; Tomassen P; Bachert C
    J Allergy Clin Immunol; 2012 Jun; 129(6):1515-21.e8. PubMed ID: 22460069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis.
    Englert JM; Hanford LE; Kaminski N; Tobolewski JM; Tan RJ; Fattman CL; Ramsgaard L; Richards TJ; Loutaev I; Nawroth PP; Kasper M; Bierhaus A; Oury TD
    Am J Pathol; 2008 Mar; 172(3):583-91. PubMed ID: 18245812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soluble RAGE is deficient in neutrophilic asthma and COPD.
    Sukkar MB; Wood LG; Tooze M; Simpson JL; McDonald VM; Gibson PG; Wark PA
    Eur Respir J; 2012 Mar; 39(3):721-9. PubMed ID: 21920897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.