BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21137081)

  • 21. Identification of epitopes of trichosanthin by phage peptide library.
    Zhu Z; Ming Y; Sun B
    Biochem Biophys Res Commun; 2001 Apr; 282(4):921-7. PubMed ID: 11352639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping of the ICOS binding surface of murine B7h using an unbiased, cellular library of B7h mutants created by cyclical packaging rescue.
    Bakkour S; Sha WC
    J Immunol Methods; 2008 Mar; 332(1-2):151-61. PubMed ID: 18294651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of high-complexity combinatorial phage display peptide libraries.
    Noren KA; Noren CJ
    Methods; 2001 Feb; 23(2):169-78. PubMed ID: 11181036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phage display: concept, innovations, applications and future.
    Pande J; Szewczyk MM; Grover AK
    Biotechnol Adv; 2010; 28(6):849-58. PubMed ID: 20659548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of target membrane proteins as detected by phage antibodies.
    Geuijen CA; Bakker AQ; de Kruif J
    Methods Mol Biol; 2009; 528():141-58. PubMed ID: 19153691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of an antibody proteomics system using a phage antibody library for efficient screening of biomarker proteins.
    Imai S; Nagano K; Yoshida Y; Okamura T; Yamashita T; Abe Y; Yoshikawa T; Yoshioka Y; Kamada H; Mukai Y; Nakagawa S; Tsutsumi Y; Tsunoda S
    Biomaterials; 2011 Jan; 32(1):162-9. PubMed ID: 20933274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptide-mediated targeting to tumor blood vessels of lung cancer for drug delivery.
    Lee TY; Lin CT; Kuo SY; Chang DK; Wu HC
    Cancer Res; 2007 Nov; 67(22):10958-65. PubMed ID: 18006841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phage display derived human monoclonal antibodies isolated by binding to the surface of live primary breast cancer cells recognize GRP78.
    Jakobsen CG; Rasmussen N; Laenkholm AV; Ditzel HJ
    Cancer Res; 2007 Oct; 67(19):9507-17. PubMed ID: 17909061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping tumor vascular diversity by screening phage display libraries.
    Zurita AJ; Arap W; Pasqualini R
    J Control Release; 2003 Aug; 91(1-2):183-6. PubMed ID: 12932650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative PCR-based approach for rapid phage display analysis: a foundation for high throughput vascular proteomic profiling.
    Ballard VL; Holm JM; Edelberg JM
    Physiol Genomics; 2006 Aug; 26(3):202-8. PubMed ID: 16705020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Designing scaffolds of peptides for phage display libraries.
    Uchiyama F; Tanaka Y; Minari Y; Tokui N
    J Biosci Bioeng; 2005 May; 99(5):448-56. PubMed ID: 16233816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the synergistic effects of ligand-mediated and phage-intrinsic properties during in vivo selection.
    Driessen WH; Bronk LF; Edwards JK; Proneth B; Souza GR; Decuzzi P; Pasqualini R; Arap W
    Adv Genet; 2010; 69():115-33. PubMed ID: 20807605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomics in South Africa: current status, challenges and prospects.
    Ndimba BK; Thomas LA
    Biotechnol J; 2008 Nov; 3(11):1368-74. PubMed ID: 19016510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mucosal vaccination with phage-displayed tumour antigens identified through proteomics-based strategy inhibits the growth and metastasis of 4T1 breast adenocarcinoma.
    Shadidi M; Sørensen D; Dybwad A; Furset G; Sioud M
    Int J Oncol; 2008 Jan; 32(1):241-7. PubMed ID: 18097564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomics in prostate cancer biomarker discovery.
    Larkin SE; Zeidan B; Taylor MG; Bickers B; Al-Ruwaili J; Aukim-Hastie C; Townsend PA
    Expert Rev Proteomics; 2010 Feb; 7(1):93-102. PubMed ID: 20121479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy.
    Petricoin EF; Bichsel VE; Calvert VS; Espina V; Winters M; Young L; Belluco C; Trock BJ; Lippman M; Fishman DA; Sgroi DC; Munson PJ; Esserman LJ; Liotta LA
    J Clin Oncol; 2005 May; 23(15):3614-21. PubMed ID: 15908672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combinatorial ligand-directed lung targeting.
    Giordano RJ; Edwards JK; Tuder RM; Arap W; Pasqualini R
    Proc Am Thorac Soc; 2009 Aug; 6(5):411-5. PubMed ID: 19687212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translational proteomics: what can you do for true patients?
    Belda-Iniesta C; de Castro J; Perona R
    J Proteome Res; 2011 Jan; 10(1):101-4. PubMed ID: 20977278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Development of a Drug Discovery Method Targeted to Stromal Tissue].
    Kamada H
    Yakugaku Zasshi; 2016; 136(3):435-41. PubMed ID: 26935083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo phage display and vascular heterogeneity: implications for targeted medicine.
    Trepel M; Arap W; Pasqualini R
    Curr Opin Chem Biol; 2002 Jun; 6(3):399-404. PubMed ID: 12023122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.