These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21137716)

  • 1. From nanofabrication to self-fabrication--tailored chemistry for control of single molecule electronic devices.
    Moth-Poulsen K; Bjørnholm T
    Chimia (Aarau); 2010; 64(6):404-8. PubMed ID: 21137716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel Fabrication of Self-Assembled Nanogaps for Molecular Electronic Devices.
    Eklöf-Österberg J; Gschneidtner T; Tebikachew B; Lara-Avila S; Moth-Poulsen K
    Small; 2018 Dec; 14(50):e1803471. PubMed ID: 30358919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects.
    Biswas A; Bayer IS; Biris AS; Wang T; Dervishi E; Faupel F
    Adv Colloid Interface Sci; 2012 Jan; 170(1-2):2-27. PubMed ID: 22154364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single molecule electronic devices.
    Song H; Reed MA; Lee T
    Adv Mater; 2011 Apr; 23(14):1583-608. PubMed ID: 21290434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conquest of middle-earth: combining top-down and bottom-up nanofabrication for constructing nanoparticle based devices.
    Diaz Fernandez YA; Gschneidtner TA; Wadell C; Fornander LH; Lara Avila S; Langhammer C; Westerlund F; Moth-Poulsen K
    Nanoscale; 2014 Dec; 6(24):14605-16. PubMed ID: 25208687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light and redox switchable molecular components for molecular electronics.
    Browne WR; Feringa BL
    Chimia (Aarau); 2010; 64(6):398-403. PubMed ID: 21137715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.
    Simeone FC; Rampi MA
    Chimia (Aarau); 2010; 64(6):362-9. PubMed ID: 21137710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-templated nanowire fabrication.
    Stoltenberg RM; Woolley AT
    Biomed Microdevices; 2004 Jun; 6(2):105-11. PubMed ID: 15320631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Issues of nanoelectronics: a possible roadmap.
    Wang KL
    J Nanosci Nanotechnol; 2002; 2(3-4):235-66. PubMed ID: 12908252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled nanogaps for molecular electronics.
    Tang Q; Tong Y; Jain T; Hassenkam T; Wan Q; Moth-Poulsen K; Bjørnholm T
    Nanotechnology; 2009 Jun; 20(24):245205. PubMed ID: 19468160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Electronics: Chemical and Analytical Perspectives.
    Nichols RJ; Higgins SJ
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():389-417. PubMed ID: 26048551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CMOS-compatible fabrication of room-temperature single-electron devices.
    Ray V; Subramanian R; Bhadrachalam P; Ma LC; Kim CU; Koh SJ
    Nat Nanotechnol; 2008 Oct; 3(10):603-8. PubMed ID: 18838999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers.
    Lee SW; Jo G; Lee T; Lee YG
    Opt Express; 2009 Sep; 17(20):17491-501. PubMed ID: 19907533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics.
    Iost RM; Crespilho FN
    Biosens Bioelectron; 2012 Jan; 31(1):1-10. PubMed ID: 22154167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-Based Fabrication for Nanoelectronics.
    Dai X; Li Q; Aldalbahi A; Wang L; Fan C; Liu X
    Nano Lett; 2020 Aug; 20(8):5604-5615. PubMed ID: 32787185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires.
    Lee M; Im J; Lee BY; Myung S; Kang J; Huang L; Kwon YK; Hong S
    Nat Nanotechnol; 2006 Oct; 1(1):66-71. PubMed ID: 18654144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry.
    Chichak KS; Star A; Altoé MV; Stoddart JF
    Small; 2005 Apr; 1(4):452-61. PubMed ID: 17193471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and nanoscale materials and devices in electronics.
    Fu L; Cao L; Liu Y; Zhu D
    Adv Colloid Interface Sci; 2004 Dec; 111(3):133-57. PubMed ID: 15589806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fullerenes, carbon nanotubes, and graphene for molecular electronics.
    Pinzón JR; Villalta-Cerdas A; Echegoyen L
    Top Curr Chem; 2012; 312():127-74. PubMed ID: 21894583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel ZnO nanorod films by chemical solution deposition for planar device applications.
    Singh D; Narasimulu AA; Garcia-Gancedo L; Fu YQ; Soin N; Shao G; Luo JK
    Nanotechnology; 2013 Jul; 24(27):275601. PubMed ID: 23743485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.