These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21137734)

  • 1. A ferrofluid guided system for the rapid separation of the non-magnetic particles in a microfluidic device.
    Asmatulu R; Zhang B; Nuraje N
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6383-7. PubMed ID: 21137734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms.
    Cao Q; Han X; Li L
    Lab Chip; 2014 Aug; 14(15):2762-77. PubMed ID: 24903572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic-Field-Assisted Fabrication and Manipulation of Nonspherical Polymer Particles in Ferrofluid-Based Droplet Microfluidics.
    Zhu T; Cheng R; Sheppard GR; Locklin J; Mao L
    Langmuir; 2015 Aug; 31(31):8531-4. PubMed ID: 26212067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.
    Munir A; Zhu Z; Wang J; Zhou HS
    IET Nanobiotechnol; 2014 Jun; 8(2):102-10. PubMed ID: 25014081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip polyelectrolyte coating onto magnetic droplets - towards continuous flow assembly of drug delivery capsules.
    Alorabi AQ; Tarn MD; Gómez-Pastora J; Bringas E; Ortiz I; Paunov VN; Pamme N
    Lab Chip; 2017 Nov; 17(22):3785-3795. PubMed ID: 28991297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic fabrication of microfluidic systems for particles separation based on optical projection lithography.
    Sun L; Yang W; Chu H; Yang R; Yu H
    Biomed Microdevices; 2020 Nov; 22(4):80. PubMed ID: 33170362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section.
    Lee W; Kwon D; Choi W; Jung GY; Jeon S
    Sci Rep; 2015 Jan; 5():7717. PubMed ID: 25578942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free separation of nanoscale particles by an ultrahigh gradient magnetic field in a microfluidic device.
    Zeng L; Chen X; Du J; Yu Z; Zhang R; Zhang Y; Yang H
    Nanoscale; 2021 Feb; 13(7):4029-4037. PubMed ID: 33533377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reservoir-based dielectrophoresis for microfluidic particle separation by charge.
    Patel S; Qian S; Xuan X
    Electrophoresis; 2013 Apr; 34(7):961-8. PubMed ID: 23161644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic generation of magnetic-fluorescent Janus microparticles for biomolecular detection.
    Lan J; Chen J; Li N; Ji X; Yu M; He Z
    Talanta; 2016 May; 151():126-131. PubMed ID: 26946019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic particle sorting utilizing inertial lift force.
    Nieuwstadt HA; Seda R; Li DS; Fowlkes JB; Bull JL
    Biomed Microdevices; 2011 Feb; 13(1):97-105. PubMed ID: 20865451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field-flow fractionation of magnetic particles in a cyclic magnetic field.
    Bi Y; Pan X; Chen L; Wan QH
    J Chromatogr A; 2011 Jun; 1218(25):3908-14. PubMed ID: 21592484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation.
    Qu P; Lei J; Zhang L; Ouyang R; Ju H
    J Chromatogr A; 2010 Sep; 1217(39):6115-21. PubMed ID: 20727525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device.
    Zhu L; Li Y; Zhang Q; Wang H; Zhu M
    Biomed Microdevices; 2010 Feb; 12(1):169-77. PubMed ID: 19924539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferrofluid mediated nanocytometry.
    Kose AR; Koser H
    Lab Chip; 2012 Jan; 12(1):190-6. PubMed ID: 22076536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Development of a Traveling Wave Ferro-Microfluidic Device and System Rig for Potential Magnetophoretic Cell Separation and Sorting in a Water-Based Ferrofluid.
    Hewlin RL; Edwards M; Schultz C
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.