BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21137803)

  • 1. Study of buffer layer thickness on bulk heterojunction solar cell.
    Noh S; Suman CK; Lee D; Kim S; Lee C
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6815-8. PubMed ID: 21137803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer/Fullerene Blend Solar Cells with Cadmium Sulfide Thin Film as an Alternative Hole-Blocking Layer.
    Thanihaichelvan M; Loheeswaran S; Balashangar K; Velauthapillai D; Ravirajan P
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High efficiency of poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells through precrystallining of poly(3-hexylthiophene) based layer.
    Chen L; Wang P; Chen Y
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5986-93. PubMed ID: 23763345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Molecular and Interchain Ordering in the Formation of a δ-Hole-Transporting Layer in Organic Solar Cells.
    Chandrasekaran N; Li C; Singh S; Kumar A; McNeill CR; Huettner S; Kabra D
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3806-3814. PubMed ID: 31840485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient inverted bulk heterojunction photovoltaic devices using a transparent polymeric interfacial buffer layer with C60 pendant and UV curable groups.
    Shin Y; Jeong S; Kwon HY; Han YS; Kwon Y
    J Nanosci Nanotechnol; 2012 May; 12(5):4233-7. PubMed ID: 22852380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale control of the network morphology of high efficiency polymer fullerene solar cells by the use of high material concentration in the liquid phase.
    Radbeh R; Parbaile E; Bouclé J; Di Bin C; Moliton A; Coudert V; Rossignol F; Ratier B
    Nanotechnology; 2010 Jan; 21(3):035201. PubMed ID: 19966408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of donor content on the efficiency of P3HT:PCBM bilayers: optical and photocurrent spectral data analyses.
    Casalegno M; Kotowski D; Bernardi A; Luzzati S; Po R; Raos G
    Phys Chem Chem Phys; 2015 Jan; 17(4):2447-56. PubMed ID: 25493298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency Enhancement in Organic Solar Cells by Use of Cobalt Phthalocyanine (CoPc) Thin Films.
    Rawat SS; Kumar A; Srivastava R; Suman CK
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3703-3709. PubMed ID: 31748067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Buffer layer of PEDOT:PSS/graphene composite for polymer solar cells.
    Yin B; Liu Q; Yang L; Wu X; Liu Z; Hua Y; Yin S; Chen Y
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1934-8. PubMed ID: 20355603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design considerations for electrode buffer layer materials in polymer solar cells.
    Bilby D; Frieberg B; Kramadhati S; Green P; Kim J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14964-74. PubMed ID: 25116039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Analysis of the Interface in Bulk-Heterojunction Solar Cells by X-ray Photoelectron Spectroscopy Depth Profiling.
    Busby Y; List-Kratochvil EJ; Pireaux JJ
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3842-3848. PubMed ID: 28072913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Polymer-Organic Solar Cells Based on P3HT:PCBM Bulk Heterojunction Active Layer Constructed under Environmental Conditions.
    Grancharov G; Atanasova MD; Kalinova R; Gergova R; Popkirov G; Dikov C; Sendova-Vassileva M
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of the organic/inorganic interface on the organic-inorganic hybrid solar cells.
    Ichikawa T; Shiratori S
    J Nanosci Nanotechnol; 2012 May; 12(5):3725-31. PubMed ID: 22852300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminating between bilayer and bulk heterojunction polymer:fullerene solar cells using the external quantum efficiency.
    Gevaerts VS; Koster LJ; Wienk MM; Janssen RA
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3252-5. PubMed ID: 21774483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-separation enhancement in inverted polymer solar cells by molecular-level triple heterojunction: NiO-np:P3HT:PCBM.
    Pradeep UW; Villani M; Calestani D; Cristofolini L; Iannotta S; Zappettini A; Coppedè N
    Nanotechnology; 2017 Jan; 28(3):035403. PubMed ID: 27966476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications.
    Li W; Lee T; Oh SJ; Kagan CR
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy.
    Kuwabara T; Kawahara Y; Yamaguchi T; Takahashi K
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2107-10. PubMed ID: 20355841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Ga- and Al-codoped ZnO buffer layer on the performance of inverted polymer solar cells.
    Lee SJ; Kim DH; Kang JK; Kim DY; Kim HM; Han YS
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7839-43. PubMed ID: 24266149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ZnO nanoparticles on P3HT:PCBM organic solar cells with DMF-modulated PEDOT:PSS buffer layers.
    Oh SH; Heo SJ; Yang JS; Kim HJ
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11530-4. PubMed ID: 24175740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of solution-processed niO thin film as a hole transport layer in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction solar cells.
    Jung J; Oh SH; Yoon DH; Kim HJ
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1165-9. PubMed ID: 22629913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.