These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 21137835)
1. Core/shell nanoparticles for pH-sensitive delivery of doxorubicin. Oh KS; Um YS; Lee JH; Cho SH; Lee KE; Han SS; Kim D; Yuk SH J Nanosci Nanotechnol; 2010 Oct; 10(10):6967-71. PubMed ID: 21137835 [TBL] [Abstract][Full Text] [Related]
2. Core/Shell nanoparticles with lecithin lipid cores for protein delivery. Oh KS; Han SK; Lee HS; Koo HM; Kim RS; Lee KE; Han SS; Cho SH; Yuk SH Biomacromolecules; 2006 Aug; 7(8):2362-7. PubMed ID: 16903683 [TBL] [Abstract][Full Text] [Related]
3. Formation of core/shell nanoparticles with a lipid core and their application as a drug delivery system. Oh KS; Lee KE; Han SS; Cho SH; Kim D; Yuk SH Biomacromolecules; 2005; 6(2):1062-7. PubMed ID: 15762679 [TBL] [Abstract][Full Text] [Related]
4. Preparation of core cross-linked PCL-PEG-PCL micelles for doxorubicin delivery in vitro. Zhang J; Men K; Gu Y; Wang X; Gou M; Guo G; Luo F; Qian Z J Nanosci Nanotechnol; 2011 Jun; 11(6):5054-61. PubMed ID: 21770143 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular assembly of poly(β-cyclodextrin) block copolymer and benzimidazole-poly(ε-caprolactone) based on host-guest recognition for drug delivery. Gao Y; Li G; Zhou Z; Guo L; Liu X Colloids Surf B Biointerfaces; 2017 Dec; 160():364-371. PubMed ID: 28963957 [TBL] [Abstract][Full Text] [Related]
6. Facile preparation of core cross-linked nanomicelles based on graft copolymers with pH responsivity and reduction sensitivity for doxorubicin delivery. Chen T; Xiao Y; Lu W; Liu S; Gan L; Yu J; Huang J Colloids Surf B Biointerfaces; 2018 Jan; 161():606-613. PubMed ID: 29156337 [TBL] [Abstract][Full Text] [Related]
7. Tuning core vs. shell dimensions to adjust the performance of nanoscopic containers for the loading and release of doxorubicin. Lin LY; Lee NS; Zhu J; Nyström AM; Pochan DJ; Dorshow RB; Wooley KL J Control Release; 2011 May; 152(1):37-48. PubMed ID: 21241750 [TBL] [Abstract][Full Text] [Related]
8. Biotin-Conjugated Multilayer Poly [D,L-lactide-co-glycolide]-Lecithin-Polyethylene Glycol Nanoparticles for Targeted Delivery of Doxorubicin. Dai Y; Xing H; Song F; Yang Y; Qiu Z; Lu X; Liu Q; Ren S; Chen X; Li N J Pharm Sci; 2016 Sep; 105(9):2949-2958. PubMed ID: 27209461 [TBL] [Abstract][Full Text] [Related]
9. Design of pH/reduction dual-responsive nanoparticles as drug delivery system for DOX: Modulating controlled release behavior with bimodal drug-loading. Liu P; Zhang R; Pei M Colloids Surf B Biointerfaces; 2017 Dec; 160():455-461. PubMed ID: 28985607 [TBL] [Abstract][Full Text] [Related]
10. Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer. Jeong YI; Kim DH; Chung CW; Yoo JJ; Choi KH; Kim CH; Ha SH; Kang DH Int J Nanomedicine; 2011; 6():1415-27. PubMed ID: 21796244 [TBL] [Abstract][Full Text] [Related]
11. N-Acetyl-D-glucosamine decorated polymeric nanoparticles for targeted delivery of doxorubicin: Synthesis, characterization and in vitro evaluation. Tian B; Ding Y; Han J; Zhang J; Han Y; Han J Colloids Surf B Biointerfaces; 2015 Jun; 130():246-54. PubMed ID: 25921641 [TBL] [Abstract][Full Text] [Related]
12. Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart. Oh KS; Song JY; Yoon SJ; Park Y; Kim D; Yuk SH J Control Release; 2010 Sep; 146(2):207-11. PubMed ID: 20417673 [TBL] [Abstract][Full Text] [Related]
13. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin. Chen WL; Li F; Tang Y; Yang SD; Li JZ; Yuan ZQ; Liu Y; Zhou XF; Liu C; Zhang XN Int J Nanomedicine; 2017; 12():4241-4256. PubMed ID: 28652730 [TBL] [Abstract][Full Text] [Related]
14. Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery: preparation and in-vitro and in-vivo characterization. Yu JM; Li YJ; Qiu LY; Jin Y J Pharm Pharmacol; 2009 Jun; 61(6):713-9. PubMed ID: 19505361 [TBL] [Abstract][Full Text] [Related]
15. pH-sensitive poly(glutamic acid) grafted mesoporous silica nanoparticles for drug delivery. Zheng J; Tian X; Sun Y; Lu D; Yang W Int J Pharm; 2013 Jun; 450(1-2):296-303. PubMed ID: 23598077 [TBL] [Abstract][Full Text] [Related]
16. Development of novel polymeric micellar drug conjugates and nano-containers with hydrolyzable core structure for doxorubicin delivery. Mahmud A; Xiong XB; Lavasanifar A Eur J Pharm Biopharm; 2008 Aug; 69(3):923-34. PubMed ID: 18430550 [TBL] [Abstract][Full Text] [Related]
17. A high-loading drug delivery system based on magnetic nanomaterials modified by hyperbranched phenylboronic acid for tumor-targeting treatment with pH response. Song H; Wang C; Zhang H; Yao L; Zhang J; Gao R; Tang X; Chong T; Liu W; Tang Y Colloids Surf B Biointerfaces; 2019 Oct; 182():110375. PubMed ID: 31351268 [TBL] [Abstract][Full Text] [Related]
18. Zwitterionic nanoparticles constructed with well-defined reduction-responsive shell and pH-sensitive core for "spatiotemporally pinpointed" drug delivery. Huang P; Liu J; Wang W; Li C; Zhou J; Wang X; Deng L; Kong D; Liu J; Dong A ACS Appl Mater Interfaces; 2014 Aug; 6(16):14631-43. PubMed ID: 25100635 [TBL] [Abstract][Full Text] [Related]
19. Bile Acid-Based Drug Delivery Systems for Enhanced Doxorubicin Encapsulation: Comparing Hydrophobic and Ionic Interactions in Drug Loading and Release. Cunningham AJ; Robinson M; Banquy X; Leblond J; Zhu XX Mol Pharm; 2018 Mar; 15(3):1266-1276. PubMed ID: 29378128 [TBL] [Abstract][Full Text] [Related]
20. A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane) nanogels. Chen J; Dai H; Lin H; Tu K; Wang H; Wang LQ Colloids Surf B Biointerfaces; 2016 May; 141():278-283. PubMed ID: 26859119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]