These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21137855)

  • 1. Drift compensation and faulty display correction in robotic nano manipulation.
    Liu LQ; Xi N; Wang YC; Dong ZL
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7010-4. PubMed ID: 21137855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device.
    Iwata F; Ohashi Y; Ishisaki I; Picco LM; Ushiki T
    Ultramicroscopy; 2013 Oct; 133():88-94. PubMed ID: 23933597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly.
    Xie H; Haliyo DS; Régnier S
    Nanotechnology; 2009 May; 20(21):215301. PubMed ID: 19423927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing single DNA molecules manipulation by AFM.
    Long F; Wang C; Lü M; Zhang F; Sun J; Hu J
    J Microsc; 2011 Aug; 243(2):118-23. PubMed ID: 21534953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFM based MWCNT nanomanipulation with force and visual feedback.
    Tian X; Wang Y; Xi N; Liu L; Jiao N; Dong Z
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1647-50. PubMed ID: 19441591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid and automated relocation method of an AFM probe for high-resolution imaging.
    Zhou P; Yu H; Shi J; Jiao N; Wang Z; Wang Y; Liu L
    Nanotechnology; 2016 Sep; 27(39):395705. PubMed ID: 27559679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsphere-Based Super-Resolution Imaging for Visualized Nanomanipulation.
    Zhang T; Yu H; Li P; Wang X; Wang F; Shi J; Liu Z; Yu P; Yang W; Wang Y; Liu L
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):48093-48100. PubMed ID: 32960563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscope nanomanipulation with simultaneous visual guidance.
    Kim S; Ratchford DC; Li X
    ACS Nano; 2009 Oct; 3(10):2989-94. PubMed ID: 19751065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic force microscopy as nanorobot.
    Xi N; Fung CK; Yang R; Lai KW; Wang DH; Seiffert-Sinha K; Sinha AA; Li G; Liu L
    Methods Mol Biol; 2011; 736():485-503. PubMed ID: 21660745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Software for drift compensation, particle tracking and particle analysis of high-speed atomic force microscopy image series.
    Husain M; Boudier T; Paul-Gilloteaux P; Casuso I; Scheuring S
    J Mol Recognit; 2012 May; 25(5):292-8. PubMed ID: 22528191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active drift compensation applied to nanorod manipulation with an atomic force microscope.
    Tranvouez E; Boer-Duchemin E; Comtet G; Dujardin G
    Rev Sci Instrum; 2007 Nov; 78(11):115103. PubMed ID: 18052500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncalssical multiscale modeling of ssDNA manipulation using a CNT-nanocarrier based on AFM.
    Korayem MH; Estaji M; Homayooni A
    Colloids Surf B Biointerfaces; 2017 Oct; 158():102-111. PubMed ID: 28686901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of atomic force microscopy image using compressed sensing.
    Han G; Lin B; Lin Y
    Micron; 2018 Feb; 105():1-10. PubMed ID: 29132029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ sensing and manipulation of molecules in biological samples using a nanorobotic system.
    Li G; Xi N; Wang DH
    Nanomedicine; 2005 Mar; 1(1):31-40. PubMed ID: 17292055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain Correction Based on Kernel Transformation for Drift Compensation in the E-Nose System.
    Tao Y; Xu J; Liang Z; Xiong L; Yang H
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Height drift correction in non-raster atomic force microscopy.
    Meyer TR; Ziegler D; Brune C; Chen A; Farnham R; Huynh N; Chang JM; Bertozzi AL; Ashby PD
    Ultramicroscopy; 2014 Feb; 137():48-54. PubMed ID: 24295799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual Servoing-Based Nanorobotic System for Automated Electrical Characterization of Nanotubes inside SEM.
    Ding H; Shi C; Ma L; Yang Z; Wang M; Wang Y; Chen T; Sun L; Toshio F
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis.
    Zhou P; Yu H; Yang W; Wen Y; Wang Z; Li WJ; Liu L
    ACS Appl Mater Interfaces; 2017 May; 9(19):16715-16724. PubMed ID: 28481525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined nanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection.
    Stark RW; Rubio-Sierra FJ; Thalhammer S; Heckl WM
    Eur Biophys J; 2003 Mar; 32(1):33-9. PubMed ID: 12632204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes.
    Habibnejad Korayem M; Farid AA; Hefzabad RN
    Beilstein J Nanotechnol; 2020; 11():147-166. PubMed ID: 32082958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.