These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21137855)

  • 21. Making a commercial atomic force microscope more accurate and faster using positive position feedback control.
    Mahmood IA; Moheimani SO
    Rev Sci Instrum; 2009 Jun; 80(6):063705. PubMed ID: 19566208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A collisional model for AFM manipulation of rigid nanoparticles.
    Gnecco E
    Beilstein J Nanotechnol; 2010; 1():158-62. PubMed ID: 21977406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 360° multiparametric imaging atomic force microscopy: A method for three-dimensional nanomechanical mapping.
    Lu H; Wen Y; Zhang H; Xie H; Shen Y
    Ultramicroscopy; 2019 Jan; 196():83-87. PubMed ID: 30300820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active control of acoustics-caused nano-vibration in atomic force microscope imaging.
    Yi S; Li T; Zou Q
    Ultramicroscopy; 2018 Dec; 195():101-110. PubMed ID: 30218905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling the manipulation of C60 on the Si001 surface performed with NC-AFM.
    Martsinovich N; Kantorovich L
    Nanotechnology; 2009 Apr; 20(13):135706. PubMed ID: 19420515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal sampling and reconstruction of undersampled atomic force microscope images using compressive sensing.
    Han G; Lin B
    Ultramicroscopy; 2018 Jun; 189():85-94. PubMed ID: 29626836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanomanipulation of extended single-DNA molecules on modified mica surfaces using the atomic force microscopy.
    Lü JH
    Colloids Surf B Biointerfaces; 2004 Dec; 39(4):177-80. PubMed ID: 15555900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanomanipulation, nanotribology and nanomechanics of Au nanorods in dry and liquid environments using an AFM and depth sensing nanoindenter.
    Maharaj D; Bhushan B
    Nanoscale; 2014 Jun; 6(11):5838-52. PubMed ID: 24752467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robotic Nanomanipulation Based on Spatiotemporal Modulation of Optical Gradients.
    Liu C; Huang Z; Huang S; Zhang Y; Li B; Nan F; Zheng Y
    ACS Nano; 2024 Jul; 18(29):19391-19400. PubMed ID: 38904270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanomanipulation of Individual DNA Molecules Covered by Single-Layered Reduced Graphene Oxide Sheets on a Solid Substrate.
    Wang Y; Shen Y; Li B; Wang S; Zhang J; Zhang Y; Hu J
    J Phys Chem B; 2018 Jan; 122(2):612-617. PubMed ID: 28731700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AFM image reconstruction for deformation measurements by digital image correlation.
    Sun Y; Pang JH
    Nanotechnology; 2006 Feb; 17(4):933-9. PubMed ID: 21727362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural network sliding mode controller of atomic force microscope-based manipulation with different cantilever probes.
    Korayem MH; Esmaeilzadehha S
    Microsc Res Tech; 2019 Jul; 82(7):993-1003. PubMed ID: 30839142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Nanomanipulation of sections of human tongue squamous cell carcinoma by atomic force microscopy].
    Li XH; Sun JL; Zhang P; Hu J; Zhang CP; Ji T
    Zhonghua Yi Xue Za Zhi; 2006 Feb; 86(8):520-5. PubMed ID: 16681879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization.
    Xing H; Hou B; Lin Z; Guo M
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anti-drift and auto-alignment mechanism for an astigmatic atomic force microscope system based on a digital versatile disk optical head.
    Hwu ET; Illers H; Wang WM; Hwang IS; Jusko L; Danzebrink HU
    Rev Sci Instrum; 2012 Jan; 83(1):013703. PubMed ID: 22299958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment.
    Korayem MH; Hoshiar AK; Ghofrani M
    J Mol Graph Model; 2017 Aug; 75():266-276. PubMed ID: 28618334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sub-nanometer drift correction for super-resolution imaging.
    Tang Y; Wang X; Zhang X; Li J; Dai L
    Opt Lett; 2014 Oct; 39(19):5685-8. PubMed ID: 25360959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembly of "3D" plasmonic clusters by "2D" AFM nanomanipulation of highly uniform and smooth gold nanospheres.
    Park KJ; Huh JH; Jung DW; Park JS; Choi GH; Lee G; Yoo PJ; Park HG; Yi GR; Lee S
    Sci Rep; 2017 Jul; 7(1):6045. PubMed ID: 28729629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time scan speed control of the atomic force microscopy for reducing imaging time based on sample topography.
    Zhang Y; Li Y; Shan G; Chen Y; Wang Z; Qian J
    Micron; 2018 Mar; 106():1-6. PubMed ID: 29278760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.