These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21137906)

  • 1. Fabrication of single-electron transistors using field-emission-induced electromigration.
    Kume W; Tomoda Y; Hanada M; Shirakashi J
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7239-43. PubMed ID: 21137906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control parameters for fabrication of single-electron transistors using field-emission-induced electromigration.
    Akimoto S; Ito M; Ueno S; Shirakashi J
    J Nanosci Nanotechnol; 2013 Feb; 13(2):993-6. PubMed ID: 23646557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of single-electron transistors using field-emission-induced electromigration.
    Ueno S; Tomoda Y; Kume W; Hanada M; Takiya K; Shirakashi J
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6258-61. PubMed ID: 22121697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning of tunnel resistance of nanogaps by field-emission-induced electromigration using current source mode.
    Takiya K; Tomoda Y; Kume W; Ueno S; Watanabe T; Shirakashi J
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6266-70. PubMed ID: 22121699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation scheme of quantum point contacts based on nanogaps using field-emission-induced electromigration.
    Suda R; Yagi M; Watanabe T; Shirakashi J
    J Nanosci Nanotechnol; 2013 Feb; 13(2):883-7. PubMed ID: 23646535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled electroplating and electromigration in nickel electrodes for nanogap formation.
    Valladares Lde L; Felix LL; Dominguez AB; Mitrelias T; Sfigakis F; Khondaker SI; Barnes CH; Majima Y
    Nanotechnology; 2010 Nov; 21(44):445304. PubMed ID: 20935352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transport and room temperature single-electron charging in 10 nm scale PtC nanostructures formed by electron beam induced deposition.
    Durrani ZAK; Jones ME; Wang C; Scotuzzi M; Hagen CW
    Nanotechnology; 2017 Nov; 28(47):474002. PubMed ID: 29027905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-aligned formation of sub 1 nm gaps utilizing electromigration during metal deposition.
    Naitoh Y; Ohata T; Matsushita R; Okawa E; Horikawa M; Oyama M; Mukaida M; Wang DF; Kiguchi M; Tsukagoshi K; Ishida T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12869-75. PubMed ID: 24274822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing spin accumulation in Ni/Au/Ni single-electron transistors with efficient spin injection and detection electrodes.
    Liu RS; Pettersson H; Michalak L; Canali CM; Samuelson L
    Nano Lett; 2007 Jan; 7(1):81-5. PubMed ID: 17212444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room temperature Coulomb blockade effects in Au nanocluster/pentacene single electron transistors.
    Zheng H; Asbahi M; Mukherjee S; Mathai CJ; Gangopadhyay K; Yang JK; Gangopadhyay S
    Nanotechnology; 2015 Sep; 26(35):355204. PubMed ID: 26267227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of room-temperature operational single-electron devices using Au nanoparticles.
    Kwon N; Kim K; Chung I
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2377-80. PubMed ID: 24745234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable nanometer electrode gaps by MeV ion irradiation.
    Cheang-Wong JC; Narumi K; Schürmann GM; Aziz MJ; Golovchenko JA
    Appl Phys Lett; 2012 Apr; 100(15):153108-1531083. PubMed ID: 22550357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dot made in metal oxide silicon-nanowire field effect transistor working at room temperature.
    Lavieville R; Triozon F; Barraud S; Corna A; Jehl X; Sanquer M; Li J; Abisset A; Duchemin I; Niquet YM
    Nano Lett; 2015 May; 15(5):2958-64. PubMed ID: 25923197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-aligned nanogaps on multilayer electrodes for fluidic and magnetic assembly of carbon nanotubes.
    Shim JS; Yun YH; Cho W; Shanov V; Schulz MJ; Ahn CH
    Langmuir; 2010 Jul; 26(14):11642-7. PubMed ID: 20553000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room temperature single electron transistor based on a size-selected aluminium cluster.
    Zharinov VS; Picot T; Scheerder JE; Janssens E; Van de Vondel J
    Nanoscale; 2020 Jan; 12(2):1164-1170. PubMed ID: 31850438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-Air Transistors: Semiconductor-Free Field-Emission Air-Channel Nanoelectronics.
    Nirantar S; Ahmed T; Ren G; Gutruf P; Xu C; Bhaskaran M; Walia S; Sriram S
    Nano Lett; 2018 Dec; 18(12):7478-7484. PubMed ID: 30441900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel fabrication of polymer-protected nanogaps.
    Zhang H; Thompson CV; Stellacci F; Thong JT
    Nanotechnology; 2010 Sep; 21(38):385303. PubMed ID: 20739741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coulomb blockade based field-effect transistors exploiting stripe-shaped channel geometries of self-assembled metal nanoparticles.
    Lehmann H; Willing S; Möller S; Volkmann M; Klinke C
    Nanoscale; 2016 Aug; 8(30):14384-92. PubMed ID: 27232949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of assembling ZnO nanoparticles into nanogap electrodes for nanoscale electronic device applications.
    Seo YK; Kumar S; Kim GH
    J Nanosci Nanotechnol; 2011 Jun; 11(6):4852-62. PubMed ID: 21770114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards parallel fabrication of single electron transistors using carbon nanotubes.
    Islam MR; Joung D; Khondaker SI
    Nanoscale; 2015 Jun; 7(21):9786-92. PubMed ID: 25962565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.