BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21137931)

  • 1. Effects of Stone-Wales defect on the interactions between NH3, NO2 and graphene.
    Zhang YH; Zhou KG; Xie KF; Gou XC; Zeng J; Zhang HL; Peng Y
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7347-50. PubMed ID: 21137931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of gas adsorption for pristine, defective and functionalized graphene.
    You Y; Deng J; Tan X; Gorjizadeh N; Yoshimura M; Smith SC; Sahajwalla V; Joshi RK
    Phys Chem Chem Phys; 2017 Feb; 19(8):6051-6056. PubMed ID: 28191577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing propensity of a defected graphane sheet towards CO, H2O and NO2.
    Hussain T; Panigrahi P; Ahuja R
    Nanotechnology; 2014 Aug; 25(32):325501. PubMed ID: 25060926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing Characteristics of a Graphene-like Boron Carbide Monolayer towards Selected Toxic Gases.
    Mahabal MS; Deshpande MD; Hussain T; Ahuja R
    Chemphyschem; 2015 Nov; 16(16):3511-7. PubMed ID: 26345696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green Synthesis of 3D Chemically Functionalized Graphene Hydrogel for High-Performance NH
    Wu J; Wei Y; Ding H; Wu Z; Yang X; Li Z; Huang W; Xie X; Tao K; Wang X
    ACS Appl Mater Interfaces; 2020 May; 12(18):20623-20632. PubMed ID: 32297738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring.
    Zhang HP; Luo XG; Lin XY; Zhang YP; Tang PP; Lu X; Tang Y
    J Mol Graph Model; 2015 Sep; 61():224-30. PubMed ID: 26295685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT study of ozone dissociation on BC₃ graphene with Stone-Wales defects.
    Peyghan AA; Moradi M
    J Mol Model; 2014 Jan; 20(1):2071. PubMed ID: 24452908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of Mn atom on pristine and defected graphene: a density functional theory study.
    Anithaa VS; Shankar R; Vijayakumar S
    J Mol Model; 2017 Apr; 23(4):132. PubMed ID: 28337679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A large gap opening of graphene induced by the adsorption of CO on the Al-doped site.
    Peyghan AA; Noei M; Tabar MB
    J Mol Model; 2013 Aug; 19(8):3007-14. PubMed ID: 23564329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh sensitivity with excellent recovery time for NH
    Chaurasiya R; Dixit A
    Phys Chem Chem Phys; 2020 Jul; 22(25):13903-13922. PubMed ID: 32542298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Stone-Wales defects on the interfacial interactions among graphene, carbon nanotubes, and Nylon 6: A first-principles study.
    Jha SK; Roth M; Todde G; Buchanan JP; Moser RD; Shukla MK; Subramanian G
    J Chem Phys; 2018 Aug; 149(5):054703. PubMed ID: 30089374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalization of the pristine and stone-wales defected BC3 graphenes with pyrene.
    Peyghan AA; Noei M; Bagheri Z
    J Mol Model; 2014 Dec; 20(12):2539. PubMed ID: 25503700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive N-Channel Graphene Gas Sensors by Nondestructive Molecular Doping.
    Kwon B; Bae H; Lee H; Kim S; Hwang J; Lim H; Lee JH; Cho K; Ye J; Lee S; Lee WH
    ACS Nano; 2022 Feb; 16(2):2176-2187. PubMed ID: 35112565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the nature of interaction and stability between DNA/RNA base pairs and defective & defect-dopant graphene sheets. A possible insights on DNA/RNA sequencing.
    Saravanan V; Rajamani A; Vasudevan S; Ramasamy S
    Int J Biol Macromol; 2020 Mar; 146():387-404. PubMed ID: 31917208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Sensitivity, Humidity-Independent, Flexible NO
    Huang Y; Jiao W; Chu Z; Wang S; Chen L; Nie X; Wang R; He X
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):997-1004. PubMed ID: 31825202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density Functional Theory Study of B, N, and Si Doped Penta-Graphene as the Potential Gas Sensors for NH
    Chen G; Gan L; Xiong H; Zhang H
    Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enriching physisorption of H2S and NH3 gases on a graphane sheet by doping with Li adatoms.
    Hussain T; Panigrahi P; Ahuja R
    Phys Chem Chem Phys; 2014 May; 16(17):8100-5. PubMed ID: 24652482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defect-engineered graphene chemical sensors with ultrahigh sensitivity.
    Lee G; Yang G; Cho A; Han JW; Kim J
    Phys Chem Chem Phys; 2016 May; 18(21):14198-204. PubMed ID: 26679757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved gas sensing activity in structurally defected bilayer graphene.
    Hajati Y; Blom T; Jafri SH; Haldar S; Bhandary S; Shoushtari MZ; Eriksson O; Sanyal B; Leifer K
    Nanotechnology; 2012 Dec; 23(50):505501. PubMed ID: 23183126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.