BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21138021)

  • 1. Electrical bistabilities and memory mechanisms of organic bistable devices fabricated utilizing SnO2 nanoparticles embedded in a poly(methyl methacrylate) layer.
    Kwak JK; Yun DY; Son DI; Jung JH; Lee DU; Kim TW
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7735-8. PubMed ID: 21138021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer.
    Son DI; Park DH; Choi WK; Cho SH; Kim WT; Kim TW
    Nanotechnology; 2009 May; 20(19):195203. PubMed ID: 19420634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer.
    Son DI; Kim JH; Park DH; Choi WK; Li F; Ham JH; Kim TW
    Nanotechnology; 2008 Feb; 19(5):055204. PubMed ID: 21817602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical bistabilities and memory stabilities of nonvolatile bistable devices fabricated utilizing C(60) molecules embedded in a polymethyl methacrylate layer.
    Cho SH; Lee DI; Jung JH; Kim TW
    Nanotechnology; 2009 Aug; 20(34):345204. PubMed ID: 19652271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices.
    Son DI; Shim JH; Park DH; Jung JH; Lee JM; Park WI; Kim TW; Choi WK
    Nanotechnology; 2011 Jul; 22(29):295203. PubMed ID: 21685558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of a blocking layer on the decrease in the leakage current in organic bistable devices.
    Yoo CH; Ko SH; Kim TW
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6463-6. PubMed ID: 24205684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operating mechanisms of organic bistable devices containing ZnO nanoparticles embedded in a poly-4-vinyl-phenol layer.
    Park KH; Li F; Jung JH; Son DI; Cho SW; Kim TW
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4801-4. PubMed ID: 21128503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer.
    Son DI; Kim TW; Shim JH; Jung JH; Lee DU; Lee JM; Park WI; Choi WK
    Nano Lett; 2010 Jul; 10(7):2441-7. PubMed ID: 20504010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Memory effects of nonvolatile memory devices with a floating gate fabricated utilizing Ag nanoparticles embedded into a polymethylmethacrylate layer.
    Kim WT; Yun DY; Jung JH; Kim TW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):791-5. PubMed ID: 21446547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the ZnS Shell Layer on the Electrical Properties of Organic Bistable Devices Fabricated Utilizing CdSe/CdS/ZnS Core-Shell-Shell Quantum Dots Embedded in a Poly(methylmethacrylate) Layer.
    Lee NH; Yun DY; Choi DH; Kim SW; Kim TW
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6271-4. PubMed ID: 27427701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charging and discharging mechanisms of organic bistable devices based on ZnO nanoparticles capped with a poly N-vinylcarbazole polymer.
    Son DI; Oh DH; Jung JH; Kim TW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):711-5. PubMed ID: 21446529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical Property Variations in Organic Bistable Devices Utilizing CdSe/CdS/ZnS Core-Shell-Shell Nanoparticle Layer Embedded in a Polystyrene Layer Due to an Inserted WO3 Layer.
    You CH; Kim TW
    J Nanosci Nanotechnol; 2015 Aug; 15(8):6112-5. PubMed ID: 26369208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier transport mechanisms of the writing and the erasing processes for Al/ZnO nanoparticles embedded in a polymethyl methacrylate layer/C60/p-Si diodes.
    Li F; Cho SW; Park KH; Son DI; Kim TW
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4721-4. PubMed ID: 21128486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible resistive switching bistable memory devices using ZnO nanoparticles embedded in polyvinyl alcohol (PVA) matrix and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS).
    Hmar JJL
    RSC Adv; 2018 May; 8(36):20423-20433. PubMed ID: 35541659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Writing and erasing mechanisms of stable nonvolatile memory devices based on SnO2 nanoparticle/polystyrene nanocomposites.
    Yun DY; Park HM; Kim TW
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9619-22. PubMed ID: 25971108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge storage variations of organic memory devices fabricated by using C60 molecules embedded in an insulating polymer layer with Au and Al electrodes.
    Cho SH; Jung JH; Ham JH; Lee DU; Kim TW
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4797-800. PubMed ID: 21128502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in the memory capability of nonvolatile memory devices fabricated using hybrid composites of InP nanoparticles and a polystyrene layer due to the scale-down.
    Lee SH; Yun DY; Jung JH; You JH; Kim TW; Ryu E; Kim SW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):449-52. PubMed ID: 21446474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge Carrier Transport Mechanism Based on Stable Low Voltage Organic Bistable Memory Device.
    Ramana VV; Moodley MK; Kumar AB; Kannan V
    J Nanosci Nanotechnol; 2015 May; 15(5):3934-8. PubMed ID: 26505027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Memory Effect of ZnO Nanorods Embedded in an Insulating Polymethylmethacrylate Layer.
    Valanarasu S; Kathaiingam A; Rhee JK; Chandramohan R; Vijayan TA; Karunakaran M
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1416-20. PubMed ID: 26353665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the memory effects for nonvolatile memory devices fabricated utilizing ZnO nanoparticles embedded in a Si3N4 layer.
    Oh DH; Cho WJ; Son DI; Kim TW
    J Nanosci Nanotechnol; 2010 May; 10(5):3508-11. PubMed ID: 20358988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.