These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21138233)

  • 1. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images.
    Vasconcelos MJ; Rua Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1153-63. PubMed ID: 21138233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards the automatic study of the vocal tract from magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    J Voice; 2011 Nov; 25(6):732-42. PubMed ID: 20952159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation of tongue shapes during vowel production in magnetic resonance images based on statistical modelling.
    Delmoral JC; Rua Ventura SM; Tavares JMR
    Proc Inst Mech Eng H; 2018 Mar; 232(3):271-281. PubMed ID: 29350087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study.
    Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM
    J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward dynamic magnetic resonance imaging of the vocal tract during speech production.
    Ventura SM; Freitas DR; Tavares JM
    J Voice; 2011 Jul; 25(4):511-8. PubMed ID: 20471801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human vocal tract analysis by in vivo 3D MRI during phonation: a complete system for imaging, quantitative modeling, and speech synthesis.
    Wismueller A; Behrends J; Hoole P; Leinsinger GL; Reiser MF; Westesson PL
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):306-12. PubMed ID: 18982619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of MRI and biomedical engineering in speech production study.
    Ventura SR; Freitas DR; Tavares JM
    Comput Methods Biomech Biomed Engin; 2009 Dec; 12(6):671-81. PubMed ID: 19418317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation.
    Poznyakovskiy AA; Mainka A; Platzek I; Mürbe D
    Biomed Res Int; 2015; 2015():906356. PubMed ID: 26557710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The magnetic resonance imaging subset of the mngu0 articulatory corpus.
    Steiner I; Richmond K; Marshall I; Gray CD
    J Acoust Soc Am; 2012 Feb; 131(2):EL106-11. PubMed ID: 22352608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D dynamic MRI of the vocal tract during natural speech.
    Lim Y; Zhu Y; Lingala SG; Byrd D; Narayanan S; Nayak KS
    Magn Reson Med; 2019 Mar; 81(3):1511-1520. PubMed ID: 30390319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vocal tract area functions from magnetic resonance imaging.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 1996 Jul; 100(1):537-54. PubMed ID: 8675847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging of the brain and vocal tract: Applications to the study of speech production and language learning.
    Carey D; McGettigan C
    Neuropsychologia; 2017 Apr; 98():201-211. PubMed ID: 27288115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weight-bearing MR imaging as an option in the study of gravitational effects on the vocal tract of untrained subjects in singing phonation.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    PLoS One; 2014; 9(11):e112405. PubMed ID: 25379885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic modes of vocal tract articulation for American English vowels.
    Story BH
    J Acoust Soc Am; 2005 Dec; 118(6):3834-59. PubMed ID: 16419828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of vocal tract shape and dimensions using magnetic resonance imaging: vowels.
    Baer T; Gore JC; Gracco LC; Nye PW
    J Acoust Soc Am; 1991 Aug; 90(2 Pt 1):799-828. PubMed ID: 1939886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A methodological and preliminary study on the acoustic effect of a trumpet player's vocal tract.
    Kaburagi T; Yamada N; Fukui T; Minamiya E
    J Acoust Soc Am; 2011 Jul; 130(1):536-45. PubMed ID: 21786919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal production mechanisms in a non-human primate: morphological data and a model.
    Riede T; Bronson E; Hatzikirou H; Zuberbühler K
    J Hum Evol; 2005 Jan; 48(1):85-96. PubMed ID: 15656937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast and flexible MRI system for the study of dynamic vocal tract shaping.
    Lingala SG; Zhu Y; Kim YC; Toutios A; Narayanan S; Nayak KS
    Magn Reson Med; 2017 Jan; 77(1):112-125. PubMed ID: 26778178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time MRI and articulatory coordination in speech.
    Demolin D; Hassid S; Metens T; Soquet A
    C R Biol; 2002 Apr; 325(4):547-56. PubMed ID: 12161933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.