BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21138249)

  • 1. Kinetic and chemical mechanism of the dihydrofolate reductase from Mycobacterium tuberculosis.
    Czekster CM; Vandemeulebroucke A; Blanchard JS
    Biochemistry; 2011 Jan; 50(3):367-75. PubMed ID: 21138249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects.
    Patel MP; Blanchard JS
    Biochemistry; 2001 May; 40(17):5119-26. PubMed ID: 11318633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two parallel pathways in the kinetic sequence of the dihydrofolate reductase from Mycobacterium tuberculosis.
    Czekster CM; Vandemeulebroucke A; Blanchard JS
    Biochemistry; 2011 Aug; 50(32):7045-56. PubMed ID: 21744813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterium tuberculosis lipoamide dehydrogenase is encoded by Rv0462 and not by the lpdA or lpdB genes.
    Argyrou A; Blanchard JS
    Biochemistry; 2001 Sep; 40(38):11353-63. PubMed ID: 11560483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein (ACP) reductase: kinetic and chemical mechanisms.
    Silva RG; de Carvalho LP; Blanchard JS; Santos DS; Basso LA
    Biochemistry; 2006 Oct; 45(43):13064-73. PubMed ID: 17059223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and chemical mechanisms of shikimate dehydrogenase from Mycobacterium tuberculosis.
    Fonseca IO; Silva RG; Fernandes CL; de Souza ON; Basso LA; Santos DS
    Arch Biochem Biophys; 2007 Jan; 457(2):123-33. PubMed ID: 17178095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase.
    Swanwick RS; Maglia G; Tey LH; Allemann RK
    Biochem J; 2006 Feb; 394(Pt 1):259-65. PubMed ID: 16241906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate isomeroreductase.
    Argyrou A; Blanchard JS
    Biochemistry; 2004 Apr; 43(14):4375-84. PubMed ID: 15065882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The catalytic and kinetic mechanisms of NADPH-dependent alkenal/one oxidoreductase.
    Dick RA; Kensler TW
    J Biol Chem; 2004 Apr; 279(17):17269-77. PubMed ID: 14966122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism.
    Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B
    J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M; Nidetzky B; Kulbe KD
    Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH dependence of enzyme reaction rates and deuterium isotope effects on the reduction of a new mechanism-based substrate by dihydrofolate reductase DHFR.
    Jeong SS; Gready JE
    Biochemistry; 1995 Mar; 34(11):3734-41. PubMed ID: 7893670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proposed proton shuttle mechanism for saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; Alguindigue SS; West AH; Cook PF
    Biochemistry; 2007 Jan; 46(3):871-82. PubMed ID: 17223709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human liver aldehyde reductase: pH dependence of steady-state kinetic parameters.
    Bhatnagar A; Das B; Liu SQ; Srivastava SK
    Arch Biochem Biophys; 1991 Jun; 287(2):329-36. PubMed ID: 1654814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of the dihydrofolate reductase reaction as determined by pH studies.
    Stone SR; Morrison JF
    Biochemistry; 1984 Jun; 23(12):2753-8. PubMed ID: 6380573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli: pH and deuterium isotope effects with NADPH as the variable substrate.
    Morrison JF; Stone SR
    Biochemistry; 1988 Jul; 27(15):5499-506. PubMed ID: 3052578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Mycobacterium tuberculosis Rv2540c DNA sequence encodes a bifunctional chorismate synthase.
    Ely F; Nunes JE; Schroeder EK; Frazzon J; Palma MS; Santos DS; Basso LA
    BMC Biochem; 2008 Apr; 9():13. PubMed ID: 18445278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.