These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21138284)

  • 1. Ring puckering: a metric for evaluating the accuracy of AM1, PM3, PM3CARB-1, and SCC-DFTB carbohydrate QM/MM simulations.
    Barnett CB; Naidoo KJ
    J Phys Chem B; 2010 Dec; 114(51):17142-54. PubMed ID: 21138284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyranose ring transition state is derived from cellobiohydrolase I induced conformational stability and glycosidic bond polarization.
    Barnett CB; Wilkinson KA; Naidoo KJ
    J Am Chem Soc; 2010 Sep; 132(37):12800-3. PubMed ID: 20795726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of the SCC-DFTB Model for Description of Five-Membered Ring Carbohydrate Conformations: Comparison to Force Fields, High-Level Electronic Structure Methods, and Experiment.
    Islam SM; Roy PN
    J Chem Theory Comput; 2012 Jul; 8(7):2412-23. PubMed ID: 26588973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are current semiempirical methods better than force fields? A study from the thermodynamics perspective.
    Seabra Gde M; Walker RC; Roitberg AE
    J Phys Chem A; 2009 Oct; 113(43):11938-48. PubMed ID: 19848431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Less is more when simulating unsulfated glycosaminoglycan 3D-structure: comparison of GLYCAM06/TIP3P, PM3-CARB1/TIP3P, and SCC-DFTB-D/TIP3P predictions with experiment.
    Sattelle BM; Almond A
    J Comput Chem; 2010 Dec; 31(16):2932-47. PubMed ID: 20564659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convergence of QM/MM free-energy perturbations based on molecular-mechanics or semiempirical simulations.
    Heimdal J; Ryde U
    Phys Chem Chem Phys; 2012 Sep; 14(36):12592-604. PubMed ID: 22797613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The implementation of a fast and accurate QM/MM potential method in Amber.
    Walker RC; Crowley MF; Case DA
    J Comput Chem; 2008 May; 29(7):1019-31. PubMed ID: 18072177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules.
    Sattelmeyer KW; Tirado-Rives J; Jorgensen WL
    J Phys Chem A; 2006 Dec; 110(50):13551-9. PubMed ID: 17165882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Sugar Puckering Profiles for Nicotinamide Ribonucleoside for Hybrid QM/MM Simulations.
    Pshetitsky Y; Eitan R; Verner G; Kohen A; Major DT
    J Chem Theory Comput; 2016 Oct; 12(10):5179-5189. PubMed ID: 27490188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QM-MM interactions in simulations of liquid water using combined semi-empirical/classical Hamiltonians.
    Geerke DP; Thiel S; Thiel W; van Gunsteren WF
    Phys Chem Chem Phys; 2008 Jan; 10(2):297-302. PubMed ID: 18213415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating AM1/d-CB1 for Chemical Glycobiology QM/MM Simulations.
    Govender KK; Naidoo KJ
    J Chem Theory Comput; 2014 Oct; 10(10):4708-17. PubMed ID: 26588160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Looking at self-consistent-charge density functional tight binding from a semiempirical perspective.
    Otte N; Scholten M; Thiel W
    J Phys Chem A; 2007 Jul; 111(26):5751-5. PubMed ID: 17385847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers.
    Hansen HS; Hünenberger PH
    J Comput Chem; 2011 Apr; 32(6):998-1032. PubMed ID: 21387332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L; Liu H
    J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AM1/d-CB1: A Semiempirical Model for QM/MM Simulations of Chemical Glycobiology Systems.
    Govender K; Gao J; Naidoo KJ
    J Chem Theory Comput; 2014; 10():4694-4707. PubMed ID: 26120288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alcohols, ethers, carbohydrates, and related compounds. IV. Carbohydrates.
    Lii JH; Chen KH; Allinger NL
    J Comput Chem; 2003 Sep; 24(12):1504-13. PubMed ID: 12868113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex.
    Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.