BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2113835)

  • 1. Strategies for the chemoenzymatic preparation of optically active 1-alkyn-3-ols.
    Glänzer BI; Königsberger K; Berger B; Faber K; Griengl H
    Chem Phys Lipids; 1990 Apr; 54(1):43-8. PubMed ID: 2113835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel chemoenzymatic strategy for the synthesis of enantiomerically pure secondary alcohols with sterically similar substituents.
    Abad JL; Soldevila C; Camps F; Clapés P
    J Org Chem; 2003 Jun; 68(13):5351-6. PubMed ID: 12816498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient chemoenzymatic synthesis of chiral pincer ligands.
    Felluga F; Baratta W; Fanfoni L; Pitacco G; Rigo P; Benedetti F
    J Org Chem; 2009 May; 74(9):3547-50. PubMed ID: 19331344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of passion fruit-typical 2-alkyl ester enantiomers via lipase-catalyzed kinetic resolution.
    Strohalm H; Dold S; Pendzialek K; Weiher M; Engel KH
    J Agric Food Chem; 2010 May; 58(10):6328-33. PubMed ID: 20415422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of optically active allylic hydroperoxy alcohols and 1, 3-diols by enzyme-catalyzed kinetic resolution and photooxygenation of chiral homoallylic alcohols.
    Adam W; Saha-Möller CR; Schmid KS
    J Org Chem; 2000 Mar; 65(5):1431-3. PubMed ID: 10814105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 1,3-dithianes and 1,3-dithiolanes. Baker's yeast reduction and lipase-catalyzed resolution for synthesis of enantiopure derivatives.
    Anthonsen T; Hoff BH; Hofsløkken NU; Skattebøl L; Sundby E
    Acta Chem Scand (Cph); 1999 May; 53(5):360-5. PubMed ID: 10353187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of optically active esters and alcohols from racemic alcohols by lipase-catalyzed stereoselective transesterification in non-aqueous reaction system.
    Nishio T; Kamimura M; Murata M; Terao Y; Achiwa K
    J Biochem; 1989 Apr; 105(4):510-2. PubMed ID: 2760012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Stereoisomeric aromatic compounds XIX: Asymmetric reduction of 4(5)-oxocarboxylic acids with baker's yeast].
    Gessner M; Günther C; Mosandl A
    Z Naturforsch C J Biosci; 1987; 42(11-12):1159-64. PubMed ID: 2966499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereochemistry and synthetic applications of products of fermentation of alpha,beta-unsaturated aromatic aldehydes by baker's yeast.
    Fuganti C; Grasselli P
    Ciba Found Symp; 1985; 111():112-27. PubMed ID: 3893937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoenzymatic synthesis of both enantiomers of 3-hydroxy-2,2-dimethylcyclohexanone.
    Chênevert R; Lévesque C; Morin P
    J Org Chem; 2008 Dec; 73(23):9501-3. PubMed ID: 18991382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of baker's yeast reduction of piperidone-carboxylates.
    Willert M; Bols M
    Acta Chem Scand (Cph); 1998 Apr; 52(4):461-8. PubMed ID: 9550085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-controlled reactions giving alkanols of use in the synthesis of biologically active molecules.
    Roberts SM
    Ciba Found Symp; 1985; 111():31-9. PubMed ID: 3893940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal properties of 3-n-alkyn-1-ols and synergism with 2-n-alkyn-1-ols and ketoconazole.
    Gershon H; Jerome JA; McElwain KF
    J Pharm Sci; 1985 May; 74(5):556-8. PubMed ID: 4020633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipases from the genus Rhizopus: Characteristics, expression, protein engineering and application.
    Yu XW; Xu Y; Xiao R
    Prog Lipid Res; 2016 Oct; 64():57-68. PubMed ID: 27497512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolution of racemic sterically hindered secondary alcohols via enzymatic alcoholysis of their esters. The first enzymatic preparation of optically pure 2,2,2-trifluoro-1-(9-anthryl)ethanols.
    Shkolnik E; Gutman AL
    Bioorg Med Chem; 1994 Jul; 2(7):567-72. PubMed ID: 7858961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of new chiral building blocks: highly enantioselective reduction of prochiral 1,3-cycloalkanediones possessing a methyl group and a protected hydroxymethyl group at their C2 position with baker's yeast or CBS catalyst.
    Watanabe H; Iwamoto M; Nakada M
    J Org Chem; 2005 Jun; 70(12):4652-8. PubMed ID: 15932301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient preparation of highly optically active (S)-(-)-2,3-allenols and (R)-(+)-2,3-allenyl acetates by a clean novozym-435-catalyzed enzymatic separation of racemic 2,3-allenols.
    Xu D; Li Z; Ma S
    Chemistry; 2002 Nov; 8(21):5012-8. PubMed ID: 12489535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Newly isolated Streptomyces spp. as enantioselective biocatalysts: hydrolysis of 1,2-O-isopropylidene glycerol racemic esters.
    Molinari F; Romano D; Gandolfi R; Kroppenstedt RM; Marinelli F
    J Appl Microbiol; 2005; 99(4):960-7. PubMed ID: 16162249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions.
    Kaluzna IA; Matsuda T; Sewell AK; Stewart JD
    J Am Chem Soc; 2004 Oct; 126(40):12827-32. PubMed ID: 15469278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of chiral alpha-hydroxy amides by two sequential enzymatic catalyzed reactions.
    Salinas Y; Oliart RM; Ramírez-Lepe M; Navarro-Ocaña A; Valerio-Alfaro G
    Appl Microbiol Biotechnol; 2007 May; 75(2):297-302. PubMed ID: 17285287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.