These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 2113901)

  • 1. Effects of hypercarbia on arterial and alveolar oxygen tensions in a model of gram-negative pneumonia.
    Keenan RJ; Todd TR; Demajo W; Slutsky AS
    J Appl Physiol (1985); 1990 May; 68(5):1820-5. PubMed ID: 2113901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of reduction in alveolar-arterial PO2 difference by helium breathing in the exercising horse.
    Erickson BK; Seaman J; Kubo K; Hiraga A; Kai M; Yamaya Y; Wagner PD
    J Appl Physiol (1985); 1994 Jun; 76(6):2794-801. PubMed ID: 7928913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A virtual respiratory model of the concentration of each gas in the alveoli as a function of time when the inspired and expired volumes are equal].
    Nose H; Kitamura S; Nishikawa T
    Masui; 2013 Oct; 62(10):1257-64. PubMed ID: 24228470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of inspired CO2 on ventilation and perfusion heterogeneity in hyperventilated dogs.
    Domino KB; Swenson ER; Polissar NL; Lu Y; Eisenstein BL; Hlastala MP
    J Appl Physiol (1985); 1993 Sep; 75(3):1306-14. PubMed ID: 8226545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A control system for arterial blood gases.
    Kawakami Y; Yoshikawa T; Asanuma Y; Murao M
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Jun; 50(6):1362-6. PubMed ID: 6790497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide added late in inspiration reduces ventilation-perfusion heterogeneity without causing respiratory acidosis.
    Brogan TV; Robertson HT; Lamm WJ; Souders JE; Swenson ER
    J Appl Physiol (1985); 2004 May; 96(5):1894-8. PubMed ID: 14660515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of hypo-, normo-, and hypercapnia induced by mechanical ventilation on intrapulmonary shunt.
    Boix JH; Alvarez F; Tejeda M; Peydro E; Olivares D; Arnau A
    Rev Esp Fisiol; 1994 Jun; 50(2):89-95. PubMed ID: 7800919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas exchange indices--how valid are they?
    Coetzee A; Swanevelder J; van der Spuy G; Jansen J
    S Afr Med J; 1995 Nov; 85(11 Suppl):1227-32. PubMed ID: 8914565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation.
    Vettermann J; Brusasco V; Rehder K
    J Appl Physiol (1985); 1988 May; 64(5):1864-9. PubMed ID: 3134328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alveolar accumulation/concentration of nitrogen during apneic oxygenation with arteriovenous carbon dioxide removal.
    Nielsen ND; Andersen G; Kjaergaard B; Staerkind ME; Larsson A
    ASAIO J; 2010; 56(1):30-4. PubMed ID: 20038832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ventilation and carbon dioxide exchange in exercising horses: effect of inspired oxygen fraction.
    Pelletier N; Leith DE
    J Appl Physiol (1985); 1995 Feb; 78(2):654-62. PubMed ID: 7759436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of alveolar oxygen on pulmonary vasoconstriction in newborn lambs versus sheep.
    Custer JR; Hales CA
    Am Rev Respir Dis; 1985 Aug; 132(2):326-31. PubMed ID: 4026054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-cycled inverse ratio ventilation does not improve gas exchange during anaesthesia.
    Tweed WA; Lee TL
    Can J Anaesth; 1991 Apr; 38(3):311-7. PubMed ID: 1903678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cardiogenic gas mixing on arterial O2 and CO2 tensions during breath holding.
    Kelly SM; Brancatisano AP; Engel LA
    J Appl Physiol (1985); 1987 Apr; 62(4):1453-9. PubMed ID: 3110119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inspiratory-to-expiratory time ratio and alveolar ventilation during high-frequency ventilation in dogs.
    Yamada Y; Hales CA; Venegas JG
    J Appl Physiol (1985); 1986 Nov; 61(5):1903-7. PubMed ID: 3096949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic hypercapnia and ventilation-perfusion matching in acute lung injury: low minute ventilation vs inspired CO2.
    Sinclair SE; Kregenow DA; Starr I; Schimmel C; Lamm WJ; Hlastala MP; Swenson ER
    Chest; 2006 Jul; 130(1):85-92. PubMed ID: 16840387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alveolar gas exchange during exercise: a single-breath analysis.
    Allen CJ; Jones NL; Killian KJ
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Dec; 57(6):1704-9. PubMed ID: 6439704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient PO2 and PCO2 differences between end-tidal gas and arterial blood during rebreathing in awake dogs.
    Loeppky JA; Scotto P; Piiper J
    Respir Physiol; 1985 May; 60(2):135-44. PubMed ID: 3925516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local pulmonary blood flow: control and gas exchange.
    Sheehan DW; Farhi LE
    Respir Physiol; 1993 Oct; 94(1):91-107. PubMed ID: 8272584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of inspired carbon dioxide on ventilation-perfusion matching in normoxia, hypoxia, and hyperoxia.
    Swenson ER; Robertson HT; Hlastala MP
    Am J Respir Crit Care Med; 1994 Jun; 149(6):1563-9. PubMed ID: 8004314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.