These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 21139048)

  • 1. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level.
    Danielsen JM; Sylvestersen KB; Bekker-Jensen S; Szklarczyk D; Poulsen JW; Horn H; Jensen LJ; Mailand N; Nielsen ML
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.003590. PubMed ID: 21139048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in characterizing ubiquitylation sites by mass spectrometry.
    Sylvestersen KB; Young C; Nielsen ML
    Curr Opin Chem Biol; 2013 Feb; 17(1):49-58. PubMed ID: 23298953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
    Oshikawa K; Matsumoto M; Oyamada K; Nakayama KI
    J Proteome Res; 2012 Feb; 11(2):796-807. PubMed ID: 22053931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
    Wagner SA; Beli P; Weinert BT; Nielsen ML; Cox J; Mann M; Choudhary C
    Mol Cell Proteomics; 2011 Oct; 10(10):M111.013284. PubMed ID: 21890473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling.
    Xu G; Paige JS; Jaffrey SR
    Nat Biotechnol; 2010 Aug; 28(8):868-73. PubMed ID: 20639865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling lysine ubiquitination by selective enrichment of ubiquitin remnant-containing peptides.
    Xu G; Deglincerti A; Paige JS; Jaffrey SR
    Methods Mol Biol; 2014; 1174():57-71. PubMed ID: 24947374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origins and evolution of ubiquitination sites.
    Hagai T; Tóth-Petróczy Á; Azia A; Levy Y
    Mol Biosyst; 2012 Jul; 8(7):1865-77. PubMed ID: 22588506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gains of ubiquitylation sites in highly conserved proteins in the human lineage.
    Kim DS; Hahn Y
    BMC Bioinformatics; 2012 Nov; 13():306. PubMed ID: 23157318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Ensemble Deep Learning based Predictor for Simultaneously Identifying Protein Ubiquitylation and SUMOylation Sites.
    He F; Li J; Wang R; Zhao X; Han Y
    BMC Bioinformatics; 2021 Oct; 22(1):519. PubMed ID: 34689734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis.
    Kim DY; Scalf M; Smith LM; Vierstra RD
    Plant Cell; 2013 May; 25(5):1523-40. PubMed ID: 23667124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites.
    Chen X; Qiu JD; Shi SP; Suo SB; Huang SY; Liang RP
    Bioinformatics; 2013 Jul; 29(13):1614-22. PubMed ID: 23626001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Analysis of E3 Ubiquitin Ligase Function.
    Müller L; Kutzner CE; Balaji V; Hoppe T
    J Vis Exp; 2021 May; (171):. PubMed ID: 34057440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-canonical ubiquitylation: mechanisms and consequences.
    McDowell GS; Philpott A
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1833-42. PubMed ID: 23732108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of native and protease-resistant ubiquitylated peptides.
    Weller CE; Huang W; Chatterjee C
    Chembiochem; 2014 Jun; 15(9):1263-7. PubMed ID: 24838693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-Specific Systematic Analysis of Lysine Modification Crosstalk.
    Xu HD; Wang LN; Wen PP; Shi SP; Qiu JD
    Proteomics; 2018 May; 18(9):e1700292. PubMed ID: 29520963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive method for detecting ubiquitinated substrates using TR-TUBE.
    Yoshida Y; Saeki Y; Murakami A; Kawawaki J; Tsuchiya H; Yoshihara H; Shindo M; Tanaka K
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4630-5. PubMed ID: 25827227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitination of p21Cip1/WAF1 by SCFSkp2: substrate requirement and ubiquitination site selection.
    Wang W; Nacusi L; Sheaff RJ; Liu X
    Biochemistry; 2005 Nov; 44(44):14553-64. PubMed ID: 16262255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
    Wagner SA; Beli P; Weinert BT; Schölz C; Kelstrup CD; Young C; Nielsen ML; Olsen JV; Brakebusch C; Choudhary C
    Mol Cell Proteomics; 2012 Dec; 11(12):1578-85. PubMed ID: 22790023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction.
    Cooper HJ; Tatham MH; Jaffray E; Heath JK; Lam TT; Marshall AG; Hay RT
    Anal Chem; 2005 Oct; 77(19):6310-9. PubMed ID: 16194093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.