These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21139076)

  • 1. Cortical input to the frontal pole of the marmoset monkey.
    Burman KJ; Reser DH; Yu HH; Rosa MG
    Cereb Cortex; 2011 Aug; 21(8):1712-37. PubMed ID: 21139076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey.
    Barbas H
    J Comp Neurol; 1988 Oct; 276(3):313-42. PubMed ID: 3192766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cingulate cortex of the rhesus monkey: II. Cortical afferents.
    Vogt BA; Pandya DN
    J Comp Neurol; 1987 Aug; 262(2):271-89. PubMed ID: 3624555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographical organization of the cortical afferent connections of the prefrontal cortex in the cat.
    Cavada C; Reinoso-Suárez F
    J Comp Neurol; 1985 Dec; 242(3):293-324. PubMed ID: 2418073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents.
    Condé F; Maire-Lepoivre E; Audinat E; Crépel F
    J Comp Neurol; 1995 Feb; 352(4):567-93. PubMed ID: 7722001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical and thalamic projections to cytoarchitectural areas 6Va and 8C of the marmoset monkey: connectionally distinct subdivisions of the lateral premotor cortex.
    Burman KJ; Bakola S; Richardson KE; Yu HH; Reser DH; Rosa MG
    J Comp Neurol; 2015 Jun; 523(8):1222-47. PubMed ID: 25556940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic organization of cortical and subcortical projections to posterior cingulate cortex in the cat: evidence for somatic, ocular, and complex subregions.
    Olson CR; Musil SY
    J Comp Neurol; 1992 Oct; 324(2):237-60. PubMed ID: 1430331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical and subcortical afferent connections of the primate's temporal pole: a study of rhesus monkeys, squirrel monkeys, and marmosets.
    Markowitsch HJ; Emmans D; Irle E; Streicher M; Preilowski B
    J Comp Neurol; 1985 Dec; 242(3):425-58. PubMed ID: 4086670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcortical projections to the frontal pole in the marmoset monkey.
    Burman KJ; Reser DH; Richardson KE; Gaulke H; Worthy KH; Rosa MG
    Eur J Neurosci; 2011 Jul; 34(2):303-19. PubMed ID: 21714814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of cortical input to the primary motor area in the marmoset monkey.
    Burman KJ; Bakola S; Richardson KE; Reser DH; Rosa MG
    J Comp Neurol; 2014 Mar; 522(4):811-43. PubMed ID: 23939531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macaque monkey retrosplenial cortex: II. Cortical afferents.
    Kobayashi Y; Amaral DG
    J Comp Neurol; 2003 Nov; 466(1):48-79. PubMed ID: 14515240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis.
    Russchen FT; Amaral DG; Price JL
    J Comp Neurol; 1987 Feb; 256(2):175-210. PubMed ID: 3549796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The entorhinal cortex of the monkey: II. Cortical afferents.
    Insausti R; Amaral DG; Cowan WM
    J Comp Neurol; 1987 Oct; 264(3):356-95. PubMed ID: 2445796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of cortical afferents to the frontal association cortex in dogs.
    Markow-Rajkowska G; Kosmal A
    Acta Neurobiol Exp (Wars); 1987; 47(4):137-61. PubMed ID: 3442268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections.
    Cavada C; Goldman-Rakic PS
    J Comp Neurol; 1989 Sep; 287(4):393-421. PubMed ID: 2477405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque.
    Boussaoud D; Ungerleider LG; Desimone R
    J Comp Neurol; 1990 Jun; 296(3):462-95. PubMed ID: 2358548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey.
    Burman KJ; Bakola S; Richardson KE; Reser DH; Rosa MG
    J Comp Neurol; 2014 Nov; 522(16):3683-716. PubMed ID: 24888737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas.
    Burman KJ; Palmer SM; Gamberini M; Rosa MG
    J Comp Neurol; 2006 Mar; 495(2):149-72. PubMed ID: 16435289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subdivisions and connections of inferior temporal cortex in owl monkeys.
    Weller RE; Kaas JH
    J Comp Neurol; 1987 Feb; 256(1):137-72. PubMed ID: 3819036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topography of projections to posterior cortical areas from the macaque frontal eye fields.
    Stanton GB; Bruce CJ; Goldberg ME
    J Comp Neurol; 1995 Mar; 353(2):291-305. PubMed ID: 7745137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.