These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 21139174)

  • 1. Development of a fully automated system for delivering odors in an MRI environment.
    Cuevas I; Gérard B; Plaza P; Lerens E; Collignon O; Grandin C; De Volder AG; Renier L
    Behav Res Methods; 2010 Nov; 42(4):1072-8. PubMed ID: 21139174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A portable experimental apparatus for human olfactory fMRI experiments.
    Sezille C; Messaoudi B; Bertrand A; Joussain P; Thévenet M; Bensafi M
    J Neurosci Methods; 2013 Aug; 218(1):29-38. PubMed ID: 23660526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Configural and elemental coding of natural odor mixture components in the human brain.
    Howard JD; Gottfried JA
    Neuron; 2014 Nov; 84(4):857-69. PubMed ID: 25453843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extension of olfactometry methods: An expandable, fully automated, mobile, MRI-compatible olfactometer.
    Bestgen AK; Schulze P; Kuchinke L; Suchan B; Derdak T; Otto T; Jettkant B; Sucker K
    J Neurosci Methods; 2016 Mar; 261():85-96. PubMed ID: 26738656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain processing of biologically relevant odors in the awake rat, as revealed by manganese-enhanced MRI.
    Lehallier B; Rampin O; Saint-Albin A; Jérôme N; Ouali C; Maurin Y; Bonny JM
    PLoS One; 2012; 7(10):e48491. PubMed ID: 23119035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neural cascade of olfactory processing: a combined fMRI-EEG study.
    Masaoka Y; Harding IH; Koiwa N; Yoshida M; Harrison BJ; Lorenzetti V; Ida M; Izumizaki M; Pantelis C; Homma I
    Respir Physiol Neurobiol; 2014 Dec; 204():71-7. PubMed ID: 24973471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source localization of event-related brain activity elicited by food and nonfood odors.
    Iannilli E; Sorokowska A; Zhigang Z; Hähner A; Warr J; Hummel T
    Neuroscience; 2015 Mar; 289():99-105. PubMed ID: 25592427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mobile olfactometer for fMRI-studies.
    Sommer JU; Maboshe W; Griebe M; Heiser C; Hörmann K; Stuck BA; Hummel T
    J Neurosci Methods; 2012 Jul; 209(1):189-94. PubMed ID: 22683953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human olfactory lateralization requires trigeminal activation.
    Croy I; Schulz M; Blumrich A; Hummel C; Gerber J; Hummel T
    Neuroimage; 2014 Sep; 98():289-95. PubMed ID: 24825502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping odor valence in the brain of flies and mice.
    Knaden M; Hansson BS
    Curr Opin Neurobiol; 2014 Feb; 24(1):34-8. PubMed ID: 24492076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hedonic-specific activity in piriform cortex during odor imagery mimics that during odor perception.
    Bensafi M; Sobel N; Khan RM
    J Neurophysiol; 2007 Dec; 98(6):3254-62. PubMed ID: 17913994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional MR imaging during odor stimulation: preliminary data.
    Yousem DM; Williams SC; Howard RO; Andrew C; Simmons A; Allin M; Geckle RJ; Suskind D; Bullmore ET; Brammer MJ; Doty RL
    Radiology; 1997 Sep; 204(3):833-8. PubMed ID: 9280268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-modal integration of intranasal stimuli: a functional magnetic resonance imaging study.
    Boyle JA; Frasnelli J; Gerber J; Heinke M; Hummel T
    Neuroscience; 2007 Oct; 149(1):223-31. PubMed ID: 17869005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective attention to affective value alters how the brain processes olfactory stimuli.
    Rolls ET; Grabenhorst F; Margot C; da Silva MA; Velazco MI
    J Cogn Neurosci; 2008 Oct; 20(10):1815-26. PubMed ID: 18370603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of valence and age on olfactory induced brain activation in healthy women.
    Reske M; Kellermann T; Shah NJ; Schneider F; Habel U
    Behav Neurosci; 2010 Jun; 124(3):414-22. PubMed ID: 20528086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The privileged brain representation of first olfactory associations.
    Yeshurun Y; Lapid H; Dudai Y; Sobel N
    Curr Biol; 2009 Nov; 19(21):1869-74. PubMed ID: 19896380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Color of scents: chromatic stimuli modulate odor responses in the human brain.
    Osterbauer RA; Matthews PM; Jenkinson M; Beckmann CF; Hansen PC; Calvert GA
    J Neurophysiol; 2005 Jun; 93(6):3434-41. PubMed ID: 15689393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Odor memories: the first sniff counts.
    Keller A
    Curr Biol; 2009 Nov; 19(21):R988-9. PubMed ID: 19922856
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of olfactory stimulation with isovaleric acid on brain activation in informed and naïve conditions: a functional MRI study.
    Murata Y; Okutani F; Nakahira M; Ushida T; Ikemoto T; Yokoe I; Takeda T; Kaba H; Tani T; Ogawa Y
    Auris Nasus Larynx; 2007 Dec; 34(4):465-9. PubMed ID: 17481839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional magnetic resonance imaging of human olfaction.
    Weismann M; Yousry I; Heuberger E; Nolte A; Ilmberger J; Kobal G; Yousry TA; Kettenmann B; Naidich TP
    Neuroimaging Clin N Am; 2001 May; 11(2):237-50, viii. PubMed ID: 11489737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.