These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21139227)

  • 1. Disruption of glutathione homeostasis causes accumulation of S-glutathionyl proteins in response to exposure to reactive oxygen species in human erythrocytes.
    Ogasawara Y; Komiyama M; Funakoshi M; Ishii K
    Biol Pharm Bull; 2010; 33(12):1925-31. PubMed ID: 21139227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyruvate kinase is protected by glutathione-dependent redox balance in human red blood cells exposed to reactive oxygen species.
    Ogasawara Y; Funakoshi M; Ishii K
    Biol Pharm Bull; 2008 Oct; 31(10):1875-81. PubMed ID: 18827347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane Skeletal Protein S-Glutathionylation in Human Red Blood Cells as Index of Oxidative Stress.
    Giustarini D; Dalle-Donne I; Milzani A; Braconi D; Santucci A; Rossi R
    Chem Res Toxicol; 2019 Jun; 32(6):1096-1102. PubMed ID: 30945548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein thiol modifications of human red blood cells treated with t-butyl hydroperoxide.
    Lii CK; Hung CN
    Biochim Biophys Acta; 1997 Aug; 1336(2):147-56. PubMed ID: 9305784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different types of glutathionylation of hemoglobin can exist in intact erythrocytes.
    Mawatari S; Murakami K
    Arch Biochem Biophys; 2004 Jan; 421(1):108-14. PubMed ID: 14678791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative insult in sheep red blood cells induced by T-butyl hydroperoxide: the roles of glutathione and glutathione peroxidase.
    Zou CG; Agar NS; Jone GL
    Free Radic Res; 2001 Jan; 34(1):45-56. PubMed ID: 11234995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutathione loading prevents free radical injury in red blood cells after storage.
    Dumaswala UJ; Wilson MJ; Wu YL; Wykle J; Zhuo L; Douglass LM; Daleke DL
    Free Radic Res; 2000 Nov; 33(5):517-29. PubMed ID: 11200085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of protein -SH groups in redox homeostasis--the erythrocyte as a model system.
    Di Simplicio P; Cacace MG; Lusini L; Giannerini F; Giustarini D; Rossi R
    Arch Biochem Biophys; 1998 Jul; 355(2):145-52. PubMed ID: 9675020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of vitamin C, deferoxamine, quercetin and rutin against tert-butyl hydroperoxide oxidative damage in human erythrocytes.
    Krukoski DW; Comar SR; Claro LM; Leonart MS; do Nascimento AJ
    Hematology; 2009 Jun; 14(3):168-72. PubMed ID: 19490763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular redox potential and hemoglobin S-glutathionylation in human and rat erythrocytes: A comparative study.
    Colombo G; Dalle-Donne I; Giustarini D; Gagliano N; Portinaro N; Colombo R; Rossi R; Milzani A
    Blood Cells Mol Dis; 2010 Mar; 44(3):133-9. PubMed ID: 19963409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence by chromatography and mass spectrometry that inorganic nitrite induces S-glutathionylation of hemoglobin in human red blood cells.
    Böhmer A; Pich A; Schmidt M; Haghikia A; Tsikas D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Apr; 1019():72-82. PubMed ID: 26830534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of red blood cell glutathione peroxidase and morphological transformation of erythrocytes under the action of tert-butyl hydroperoxide.
    Zavodnik LB; Zavodnik IB; Niekurzak A; Szosland K; Bryszewska M
    Biochem Mol Biol Int; 1998 Mar; 44(3):577-88. PubMed ID: 9556219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.
    Ogasawara Y; Funakoshi M; Ishii K
    Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the Ca pump of intact red blood cells by t-butyl hydroperoxide: importance of glutathione peroxidase.
    Rohn TT; Hinds TR; Vincenzi FF
    Biochim Biophys Acta; 1993 Nov; 1153(1):67-76. PubMed ID: 8241252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein and lipid oxidation of banked human erythrocytes: role of glutathione.
    Dumaswala UJ; Zhuo L; Jacobsen DW; Jain SK; Sukalski KA
    Free Radic Biol Med; 1999 Nov; 27(9-10):1041-9. PubMed ID: 10569637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance.
    Tang HY; Ho HY; Wu PR; Chen SH; Kuypers FA; Cheng ML; Chiu DT
    Antioxid Redox Signal; 2015 Mar; 22(9):744-59. PubMed ID: 25556665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Redox Potential of the β-
    Rubino FM
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33926119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The time-course of mixed disulfide formation between GSH and proteins in rat blood after oxidative stress with tert-butyl hydroperoxide.
    Di Simplicio P; Rossi R
    Biochim Biophys Acta; 1994 Apr; 1199(3):245-52. PubMed ID: 8161563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane skeletal protein S-glutathionylation and hemolysis in human red blood cells.
    Rossi R; Giustarini D; Milzani A; Dalle-Donne I
    Blood Cells Mol Dis; 2006; 37(3):180-7. PubMed ID: 17059889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms and potential clinical significance of S-glutathionylation.
    Dalle-Donne I; Milzani A; Gagliano N; Colombo R; Giustarini D; Rossi R
    Antioxid Redox Signal; 2008 Mar; 10(3):445-73. PubMed ID: 18092936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.