These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 21139865)
1. Measurement of secondary products during oxidation reactions of terpenes and ozone based on the PTR-MS analysis: effects of coexistent carbonyl compounds. Ishizuka Y; Tokumura M; Mizukoshi A; Noguchi M; Yanagisawa Y Int J Environ Res Public Health; 2010 Nov; 7(11):3853-70. PubMed ID: 21139865 [TBL] [Abstract][Full Text] [Related]
2. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent. Nørgaard AW; Kofoed-Sørensen V; Mandin C; Ventura G; Mabilia R; Perreca E; Cattaneo A; Spinazzè A; Mihucz VG; Szigeti T; de Kluizenaar Y; Cornelissen HJ; Trantallidi M; Carrer P; Sakellaris I; Bartzis J; Wolkoff P Environ Sci Technol; 2014 Nov; 48(22):13331-9. PubMed ID: 25299176 [TBL] [Abstract][Full Text] [Related]
3. The health significance of gas- and particle-phase terpene oxidation products: a review. Rohr AC Environ Int; 2013 Oct; 60():145-62. PubMed ID: 24036325 [TBL] [Abstract][Full Text] [Related]
4. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint. Lamorena RB; Jung SG; Bae GN; Lee W J Hazard Mater; 2007 Mar; 141(1):245-51. PubMed ID: 16908097 [TBL] [Abstract][Full Text] [Related]
5. Atmospheric Degradation of Ecologically Important Biogenic Volatiles: Investigating the Ozonolysis of (E)-β-Ocimene, Isomers of α and β-Farnesene, α-Terpinene and 6-Methyl-5-Hepten-2-One, and Their Gas-Phase Products. Touhami D; Mofikoya AO; Girling RD; Langford B; Misztal PK; Pfrang C J Chem Ecol; 2024 Apr; 50(3-4):129-142. PubMed ID: 38195852 [TBL] [Abstract][Full Text] [Related]
6. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation. Librando V; Tringali G J Environ Manage; 2005 May; 75(3):275-82. PubMed ID: 15829369 [TBL] [Abstract][Full Text] [Related]
7. Quantitative determination of biogenic volatile organic compounds in the atmosphere using proton-transfer reaction linear ion trap mass spectrometry. Mielke LH; Pratt KA; Shepson PB; McLuckey SA; Wisthaler A; Hansel A Anal Chem; 2010 Oct; 82(19):7952-7. PubMed ID: 20822166 [TBL] [Abstract][Full Text] [Related]
8. Influence of ozone concentration and temperature on ultra-fine particle and gaseous volatile organic compound formations generated during the ozone-initiated reactions with emitted terpenes from a car air freshener. Lamorena RB; Lee W J Hazard Mater; 2008 Oct; 158(2-3):471-7. PubMed ID: 18336999 [TBL] [Abstract][Full Text] [Related]
9. Indoor Illumination of Terpenes and Bleach Emissions Leads to Particle Formation and Growth. Wang C; Collins DB; Abbatt JPD Environ Sci Technol; 2019 Oct; 53(20):11792-11800. PubMed ID: 31576741 [TBL] [Abstract][Full Text] [Related]
10. Ozone-initiated VOC and particle emissions from a cleaning agent and an air freshener: risk assessment of acute airway effects. Nørgaard AW; Kudal JD; Kofoed-Sørensen V; Koponen IK; Wolkoff P Environ Int; 2014 Jul; 68():209-18. PubMed ID: 24769411 [TBL] [Abstract][Full Text] [Related]
11. Continuous real-time analysis of products from the reaction of some monoterpenes with ozone using atmospheric sampling glow discharge ionization coupled to a quadrupole ion trap mass spectrometer. Dalton CN; Jaoui M; Kamens RM; Glish GL Anal Chem; 2005 May; 77(10):3156-63. PubMed ID: 15889904 [TBL] [Abstract][Full Text] [Related]
13. Upper airway and pulmonary effects of oxidation products of (+)-alpha-pinene, d-limonene, and isoprene in BALB/c mice. Rohr AC; Wilkins CK; Clausen PA; Hammer M; Nielsen GD; Wolkoff P; Spengler JD Inhal Toxicol; 2002 Jul; 14(7):663-84. PubMed ID: 12122569 [TBL] [Abstract][Full Text] [Related]
14. Ozone removal in the sampling of parts per billion levels of terpenoid compounds: an evaluation of different scrubber materials. Fick J; Pommer L; Andersson B; Nilsson C Environ Sci Technol; 2001 Apr; 35(7):1458-62. PubMed ID: 11348086 [TBL] [Abstract][Full Text] [Related]
15. The effect of ozone on the removal effectiveness of photocatalysis on indoor gaseous biogenic volatile organic compounds. Yu KP; Lee GW; Huang GH J Air Waste Manag Assoc; 2010 Jul; 60(7):820-9. PubMed ID: 20681429 [TBL] [Abstract][Full Text] [Related]
16. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. Fan Z; Lioy P; Weschler C; Fiedler N; Kipen H; Zhang J Environ Sci Technol; 2003 May; 37(9):1811-21. PubMed ID: 12775052 [TBL] [Abstract][Full Text] [Related]
17. Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Wisthaler A; Weschler CJ Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6568-75. PubMed ID: 19706436 [TBL] [Abstract][Full Text] [Related]
18. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids. Singer BC; Destaillats H; Hodgson AT; Nazaroff WW Indoor Air; 2006 Jun; 16(3):179-91. PubMed ID: 16683937 [TBL] [Abstract][Full Text] [Related]
19. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios. Youssefi S; Waring MS Environ Sci Technol; 2014 Jul; 48(14):7899-908. PubMed ID: 24940869 [TBL] [Abstract][Full Text] [Related]
20. Surface chemistry of a pine-oil cleaner and other terpene mixtures with ozone on vinyl flooring tiles. Ham JE; Wells JR Chemosphere; 2011 Apr; 83(3):327-33. PubMed ID: 21237482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]