BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 21141072)

  • 1. [Molecular mechanisms of preretinal membrane contraction in proliferative vitreoretinal diseases and ROCK as a therapeutic target].
    Kita T
    Nippon Ganka Gakkai Zasshi; 2010 Nov; 114(11):927-34. PubMed ID: 21141072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target.
    Kita T; Hata Y; Arita R; Kawahara S; Miura M; Nakao S; Mochizuki Y; Enaida H; Goto Y; Shimokawa H; Hafezi-Moghadam A; Ishibashi T
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17504-9. PubMed ID: 18952846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent inhibition of cicatricial contraction in proliferative vitreoretinal diseases by statins.
    Kawahara S; Hata Y; Kita T; Arita R; Miura M; Nakao S; Mochizuki Y; Enaida H; Kagimoto T; Goto Y; Hafezi-Moghadam A; Ishibashi T
    Diabetes; 2008 Oct; 57(10):2784-93. PubMed ID: 18599521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Preventive strategy for the treatment of diabetic vitreoretinopathy].
    Hata Y
    Nippon Ganka Gakkai Zasshi; 2009 Mar; 113(3):379-401; discussion 402. PubMed ID: 19348184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage.
    Arita R; Hata Y; Nakao S; Kita T; Miura M; Kawahara S; Zandi S; Almulki L; Tayyari F; Shimokawa H; Hafezi-Moghadam A; Ishibashi T
    Diabetes; 2009 Jan; 58(1):215-26. PubMed ID: 18840783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-beta2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor.
    Kita T; Hata Y; Kano K; Miura M; Nakao S; Noda Y; Shimokawa H; Ishibashi T
    Diabetes; 2007 Jan; 56(1):231-8. PubMed ID: 17192487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical role of the Rho-kinase pathway in TGF-beta2-dependent collagen gel contraction by retinal pigment epithelial cells.
    Miura M; Hata Y; Hirayama K; Kita T; Noda Y; Fujisawa K; Shimokawa H; Ishibashi T
    Exp Eye Res; 2006 May; 82(5):849-59. PubMed ID: 16310190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses 5-hydroxytryptamine-induced pulmonary artery smooth muscle cell proliferation via JNK and ERK1/2 pathway.
    Chen XY; Dun JN; Miao QF; Zhang YJ
    Pharmacology; 2009; 83(2):67-79. PubMed ID: 19052484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Rho-kinase (ROCK-1 and ROCK-2) and its substantial role in the contractile activity of the sheep ureter.
    Levent A; Büyükafsar K
    Br J Pharmacol; 2004 Oct; 143(3):431-7. PubMed ID: 15351780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanism of diabetes-induced microvascular damage and therapeutic potential of ROCK inhibition].
    Arita R
    Nippon Ganka Gakkai Zasshi; 2011 Nov; 115(11):985-97. PubMed ID: 22171504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apoptosis in proliferative vitreoretinal disorders: possible involvement of TGF-beta-induced RPE cell apoptosis.
    Esser P; Heimann K; Bartz-schmidt KU; Fontana A; Schraermeyer U; Thumann G; Weller M
    Exp Eye Res; 1997 Sep; 65(3):365-78. PubMed ID: 9299173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rho-kinase inhibitors augment the inhibitory effect of propofol on rat bronchial smooth muscle contraction.
    Hanazaki M; Yokoyama M; Morita K; Kohjitani A; Sakai H; Chiba Y; Misawa M
    Anesth Analg; 2008 Jun; 106(6):1765-71. PubMed ID: 18499607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The role of specific ROCK inhibitor in the prevention of experimental PVR in rabbits].
    Zheng YP; Sun NX; Xiong QC; Quan YL; Wang F
    Zhonghua Yan Ke Za Zhi; 2005 Dec; 41(12):1112-8. PubMed ID: 16409766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of TGF-beta and TGF-beta neutralizing antibodies on fibroblast-induced collagen gel contraction: implications for proliferative vitreoretinopathy.
    Pena RA; Jerdan JA; Glaser BM
    Invest Ophthalmol Vis Sci; 1994 May; 35(6):2804-8. PubMed ID: 8188474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soluble TNF receptors in vitreoretinal proliferative disease.
    Limb GA; Hollifield RD; Webster L; Charteris DG; Chignell AH
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1586-91. PubMed ID: 11381065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Periostin in the Pathogenesis of Proliferative Vitreoretinopathy].
    Ishikawa K
    Nippon Ganka Gakkai Zasshi; 2015 Nov; 119(11):772-80. PubMed ID: 26685481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control.
    Kolavennu V; Zeng L; Peng H; Wang Y; Danesh FR
    Diabetes; 2008 Mar; 57(3):714-23. PubMed ID: 18083785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitreous vascular endothelial growth factor concentrations in proliferative diabetic retinopathy versus proliferative vitreoretinopathy.
    Citirik M; Kabatas EU; Batman C; Akin KO; Kabatas N
    Ophthalmic Res; 2012; 47(1):7-12. PubMed ID: 21691136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upregulation of RAGE and its ligands in proliferative retinal disease.
    Pachydaki SI; Tari SR; Lee SE; Ma W; Tseng JJ; Sosunov AA; Cataldergirmen G; Scarmeas N; Caspersen C; Chang S; Schiff WM; Schmidt AM; Barile GR
    Exp Eye Res; 2006 May; 82(5):807-15. PubMed ID: 16364297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Recent advance in pharmacological therapies for proliferative vitreoretinopathy].
    Zhao CH; Wang YQ; Cheng LY
    Zhonghua Yan Ke Za Zhi; 2013 Aug; 49(8):752-7. PubMed ID: 24246816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.