These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21141429)

  • 1. A re-examination of ambient air ozone monitor interferences.
    Spicer CW; Joseph DW; Ollison WM
    J Air Waste Manag Assoc; 2010 Nov; 60(11):1353-64. PubMed ID: 21141429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential interference bias in ozone standard compliance monitoring.
    Leston AR; Ollison WM; Spicer CW; Satola J
    J Air Waste Manag Assoc; 2005 Oct; 55(10):1464-72. PubMed ID: 16295271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field evaluations of newly available "interference-free" monitors for nitrogen dioxide and ozone at near-road and conventional National Ambient Air Quality Standards compliance sites.
    Leston AR; Ollison WM
    J Air Waste Manag Assoc; 2017 Nov; 67(11):1240-1248. PubMed ID: 28633004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ultraviolet absorbance, chemiluminescence, and DOAS instruments for ambient ozone monitoring.
    Williams EJ; Fehsenfeld FC; Jobson BT; Kuster WC; Goldan PD; Stutz J; McClenny WA
    Environ Sci Technol; 2006 Sep; 40(18):5755-62. PubMed ID: 17007137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field testing of new-technology ambient air ozone monitors.
    Ollison WM; Crow W; Spicer CW
    J Air Waste Manag Assoc; 2013 Jul; 63(7):855-63. PubMed ID: 23926854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive ozone network of Dallas: a modeling opportunity with community involvement. 1.
    Varns JL; Mulik JD; Sather ME; Glen G; Smith L; Stallings C
    Environ Sci Technol; 2001 Mar; 35(5):845-55. PubMed ID: 11351526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of ozone and particulate matter sensors.
    DeWitt HL; Crow WL; Flowers B
    J Air Waste Manag Assoc; 2020 Mar; 70(3):292-306. PubMed ID: 31961265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory and field evaluation of measurement methods for one-hour exposures to O3, PM2.5, and CO.
    Chang LT; Suh HH; Wolfson JM; Misra K; Allen GA; Catalano PJ; Koutrakis P
    J Air Waste Manag Assoc; 2001 Oct; 51(10):1414-22. PubMed ID: 11686245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis.
    Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of exposure-based criteria in developing alternative primary ambient ozone standards.
    Blanchard CL; Byrne SV; Ziman SD
    J Air Waste Manag Assoc; 1997 Oct; 47(10):1051-60. PubMed ID: 9354144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ozone exposure among Mexico City outdoor workers.
    O'Neill MS; Ramirez-Aguilar M; Meneses-Gonzalez F; Hernández-Avila M; Geyh AS; Sienra-Monge JJ; Romieu I
    J Air Waste Manag Assoc; 2003 Mar; 53(3):339-46. PubMed ID: 12661692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistency of ozone and nitrogen oxides standards at tropospherically relevant mixing ratios.
    Bertram TH; Cohen RC; Thorn WJ; Chu PM
    J Air Waste Manag Assoc; 2005 Oct; 55(10):1473-9. PubMed ID: 16295272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of ozone measurement methods in biomass burning smoke: an evaluation under field and laboratory conditions.
    Long RW; Whitehill A; Habel A; Urbanski S; Halliday H; Colón M; Kaushik S; Landis MS
    Atmos Meas Tech; 2021 Mar; 14(3):1783-1800. PubMed ID: 34017362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 13-week comparison of passive and continuous ozone monitors at forested sites in north-central Pennsylvania.
    Skelly JM; Ferdinand JA; Savage JE; Jagodzinski JM; Mulik JD
    J Air Waste Manag Assoc; 2001 Sep; 51(9):1280-7. PubMed ID: 11575881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An assessment of the sensitivity and reliability of the relative reduction factor approach in the development of 8-hr ozone attainment plans.
    Jones JM; Hogrefe C; Henry RF; Ku JY; Sistla G
    J Air Waste Manag Assoc; 2005 Jan; 55(1):13-9. PubMed ID: 15704536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of atmospheric ozone in the urban area of Ji'nan].
    Yin YQ; Shan WP; Ji X; You LN; Su YC
    Huan Jing Ke Xue; 2006 Nov; 27(11):2299-302. PubMed ID: 17326444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of chemiluminescence and ultraviolet ozone monitor responses in the presence of humidity and photochemical pollutants.
    Kleindienst TE; Hudgens EE; Smith DF; McElroy FF; Bufalini JJ
    Air Waste; 1993 Feb; 43(2):213-22. PubMed ID: 15739516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical smog modeling for assessment of potential impacts of different management strategies on air quality of the Bangkok Metropolitan Region, Thailand.
    Oanh NT; Zhang B
    J Air Waste Manag Assoc; 2004 Oct; 54(10):1321-38. PubMed ID: 15540584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the photochemical contribution to particulate matter in urban areas using time-series analysis.
    Rizzo M; Scheff P; Ramakrishnan V
    J Air Waste Manag Assoc; 2002 May; 52(5):593-605. PubMed ID: 12022698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9-12, 2015.
    Dreessen J; Sullivan J; Delgado R
    J Air Waste Manag Assoc; 2016 Sep; 66(9):842-62. PubMed ID: 26963934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.