These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21141460)

  • 1. [Bacterial ClpX protease structure and function--a review].
    Wang L; Xie J
    Wei Sheng Wu Xue Bao; 2010 Oct; 50(10):1281-7. PubMed ID: 21141460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone.
    Thibault G; Tsitrin Y; Davidson T; Gribun A; Houry WA
    EMBO J; 2006 Jul; 25(14):3367-76. PubMed ID: 16810315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AAA+ molecular machines: firing on all cylinders.
    Ades SE
    Curr Biol; 2006 Jan; 16(2):R46-8. PubMed ID: 16431356
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered specificity of a AAA+ protease.
    Farrell CM; Baker TA; Sauer RT
    Mol Cell; 2007 Jan; 25(1):161-6. PubMed ID: 17218279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular chaperones: clamps for the Clps?
    Feng HP; Gierasch LM
    Curr Biol; 1998 Jun; 8(13):R464-7. PubMed ID: 9651675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation.
    Gribun A; Kimber MS; Ching R; Sprangers R; Fiebig KM; Houry WA
    J Biol Chem; 2005 Apr; 280(16):16185-96. PubMed ID: 15701650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species.
    Chowdhury T; Chien P; Ebrahim S; Sauer RT; Baker TA
    Protein Sci; 2010 Feb; 19(2):242-54. PubMed ID: 20014030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase.
    Burton BM; Baker TA
    Protein Sci; 2005 Aug; 14(8):1945-54. PubMed ID: 16046622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication between ClpX and ClpP during substrate processing and degradation.
    Joshi SA; Hersch GL; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2004 May; 11(5):404-11. PubMed ID: 15064753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSP100/Clp proteins: a common mechanism explains diverse functions.
    Schirmer EC; Glover JR; Singer MA; Lindquist S
    Trends Biochem Sci; 1996 Aug; 21(8):289-96. PubMed ID: 8772382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits.
    Levchenko I; Smith CK; Walsh NP; Sauer RT; Baker TA
    Cell; 1997 Dec; 91(7):939-47. PubMed ID: 9428517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Here's the hook: similar substrate binding sites in the chaperone domains of Clp and Lon.
    Wickner S; Maurizi MR
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8318-20. PubMed ID: 10411867
    [No Abstract]   [Full Text] [Related]  

  • 16. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX.
    Ling L; MontaƱo SP; Sauer RT; Rice PA; Baker TA
    J Mol Biol; 2015 Sep; 427(18):2966-82. PubMed ID: 25797169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX.
    Thibault G; Yudin J; Wong P; Tsitrin V; Sprangers R; Zhao R; Houry WA
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17724-9. PubMed ID: 17090685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective, energy-dependent proteolysis in Escherichia coli.
    Gottesman S; Wickner S; Jubete Y; Singh SK; Kessel M; Maurizi M
    Cold Spring Harb Symp Quant Biol; 1995; 60():533-48. PubMed ID: 8824426
    [No Abstract]   [Full Text] [Related]  

  • 20. Expression of clpX, an ATPase subunit of the Clp protease, is heat and cold shock inducible in Lactococcus lactis.
    Skinner MM; Trempy JE
    J Dairy Sci; 2001 Aug; 84(8):1783-5. PubMed ID: 11518300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.