These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21141545)

  • 1. [Correlation between the refractory periods and threshold potentials and the spike programming in cortical neurons].
    Chen N; Wu YL; Wang JH
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2008 Feb; 24(1):14-7. PubMed ID: 21141545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The refractory periods and threshold potentials of sequential spikes measured by whole-cell recording.
    Chen N; Chen S; Wu Y; Wang J
    Biochem Biophys Res Commun; 2006 Feb; 340(1):151-7. PubMed ID: 16343428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons.
    Chen N; Zhu Y; Gao X; Guan S; Wang JH
    Biochem Biophys Res Commun; 2006 Jul; 346(1):281-7. PubMed ID: 16756951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The intrinsic mechanisms underlying the maturation of programming sequential spikes at cerebellar Purkinje cells.
    Guan S; Ma S; Zhu Y; Ge R; Wang Q; Wang JH
    Biochem Biophys Res Commun; 2006 Jun; 345(1):175-80. PubMed ID: 16677606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Afterhyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels.
    Chen N; Chen X; Yu J; Wang J
    Biochem Biophys Res Commun; 2006 Aug; 346(3):938-45. PubMed ID: 16777065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks.
    Hasenstaub A; Shu Y; Haider B; Kraushaar U; Duque A; McCormick DA
    Neuron; 2005 Aug; 47(3):423-35. PubMed ID: 16055065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spike timing and reliability in cortical pyramidal neurons: effects of EPSC kinetics, input synchronization and background noise on spike timing.
    Rodriguez-Molina VM; Aertsen A; Heck DH
    PLoS One; 2007 Mar; 2(3):e319. PubMed ID: 17389910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The postnatal development of refractory periods and threshold potentials at cerebellar Purkinje neurons.
    Guan S; Ma S; Zhu Y; Wang J
    Brain Res; 2006 Jun; 1097(1):59-64. PubMed ID: 16730670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons.
    Fellous JM; Houweling AR; Modi RH; Rao RP; Tiesinga PH; Sejnowski TJ
    J Neurophysiol; 2001 Apr; 85(4):1782-7. PubMed ID: 11287500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic interneuron subtype- and age-dependent modulation of GABAergic synaptic transmission by beta-adrenoceptors in rat insular cortex.
    Koyanagi Y; Yamamoto K; Oi Y; Koshikawa N; Kobayashi M
    J Neurophysiol; 2010 May; 103(5):2876-88. PubMed ID: 20457865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic action potential generation in cortical interneurons during synchronized GABA responses.
    Keros S; Hablitz JJ
    Neuroscience; 2005; 131(4):833-42. PubMed ID: 15749338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acidosis and alkalosis impair brain functions through weakening spike encoding at cortical GABAergic neurons.
    Song R; Zhang L; Yang Z; Tian X
    J Neurol Sci; 2011 May; 304(1-2):122-6. PubMed ID: 21353681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of basolateral amygdala projection cells and interneurons using extracellular recordings.
    Likhtik E; Pelletier JG; Popescu AT; Paré D
    J Neurophysiol; 2006 Dec; 96(6):3257-65. PubMed ID: 17110739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Background synaptic conductance and precision of EPSP-spike coupling at pyramidal cells.
    Zsiros V; Hestrin S
    J Neurophysiol; 2005 Jun; 93(6):3248-56. PubMed ID: 15716369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding.
    Wang JH; Wei J; Chen X; Yu J; Chen N; Shi J
    J Cell Sci; 2008 Sep; 121(Pt 17):2951-60. PubMed ID: 18697836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of interictal spikes on single-cell firing patterns in the hippocampus.
    Zhou JL; Lenck-Santini PP; Zhao Q; Holmes GL
    Epilepsia; 2007 Apr; 48(4):720-31. PubMed ID: 17284294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex.
    Le Bé JV; Silberberg G; Wang Y; Markram H
    Cereb Cortex; 2007 Sep; 17(9):2204-13. PubMed ID: 17124287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkalosis leads to the over-activity of cortical principal neurons.
    Lu Y; Yi L; Liu D; Li J; Sun L; Zhang Z
    Neurosci Lett; 2012 Sep; 525(2):117-22. PubMed ID: 22842394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The postnatal development of intrinsic properties and spike encoding at cortical GABAergic neurons.
    Wang Q; Liu X; Ge R; Guan S; Zhu Y; Wang JH
    Biochem Biophys Res Commun; 2009 Jan; 378(4):706-10. PubMed ID: 19059212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.